【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說:“我羊所吃的禾苗只有馬的一半,”馬主人說:“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應(yīng)償還多少?該問題中,1斗為10升,則馬主人應(yīng)償還( )升粟?

A. B. C. D.

【答案】D

【解析】

根據(jù)題意可知,羊馬牛的三主人應(yīng)償還的量構(gòu)成了公比為2的等比數(shù)列,而前3項(xiàng)和為50升,即可利用等比數(shù)列求和公式求出,進(jìn)而求出馬主人應(yīng)該償還的量.

因?yàn)?/span>=升,設(shè)羊、馬、牛的主人應(yīng)償還的量分別為,

由題意可知其構(gòu)成了公比為2的等比數(shù)列,且

,解得,

所以馬主人要償還的量為:,

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是( )

A.命題“若,則”的逆否命題是“若,則

B.”是“”的充分不必要條件

C.為假命題,則、均為假命題

D.命題:“,使得”,則非:“,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對轄區(qū)內(nèi),三類行業(yè)共200個(gè)單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評估,考評分?jǐn)?shù)達(dá)到80分及其以上的單位被稱為“星級”環(huán)保單位,未達(dá)到80分的單位被稱為“非星級”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個(gè)單位,其考評分?jǐn)?shù)如下:

類行業(yè):85,8277,78,83,87;

類行業(yè):76,67,8085,7981;

類行業(yè):8789,7686,75,8490,82

(Ⅰ)計(jì)算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個(gè)數(shù);

(Ⅱ)若從抽取的類行業(yè)這6個(gè)單位中,再隨機(jī)選取3個(gè)單位進(jìn)行某項(xiàng)調(diào)查,求選出的這3個(gè)單位中既有“星級”環(huán)保單位,又有“非星級”環(huán)保單位的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),命題p:函數(shù)內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.

1)若命題q是真命題,求a的取值范圍;

2)若命題是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

1)求的值;

2時(shí),求的取值范圍;

3)函數(shù)的性質(zhì)通常指的是函數(shù)的定義域、值域、單調(diào)性、周期性、奇偶性等,請你探究函數(shù)其中的三個(gè)性質(zhì)(直接寫出結(jié)論即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三角形的邊長為2,是邊的中點(diǎn),動點(diǎn)滿足,且,其中,則的最大值為( )

A.1B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),是函數(shù)圖象上的任意兩點(diǎn),且角的終邊經(jīng)過點(diǎn),時(shí),的最小值為

1)求函數(shù)的解析式;

2)若方程內(nèi)有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)證明:函數(shù)在區(qū)間存在唯一的極小值點(diǎn),且;

(2)證明:函數(shù)有且僅有兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列命題正確的是______填上你認(rèn)為正確的所有命題的序號

函數(shù)的單調(diào)遞增區(qū)間是;函數(shù)的圖像關(guān)于點(diǎn)對稱;

函數(shù)的圖像向左平移個(gè)單位長度后,所得的圖像關(guān)于y軸對稱,m的最小值是;

若實(shí)數(shù)m使得方程上恰好有三個(gè)實(shí)數(shù)解,,,

查看答案和解析>>

同步練習(xí)冊答案