10.歐拉公式eix=cosx+isinx(i為虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)明的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里占用非常重要的地位,被譽(yù)為“數(shù)學(xué)中的天橋”,根據(jù)歐拉公式可知,e2i表示的復(fù)數(shù)在復(fù)平面中位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 e2i=cos2+isin2,根據(jù)2∈$(\frac{π}{2},π)$,即可判斷出.

解答 解:e2i=cos2+isin2,
∵2∈$(\frac{π}{2},π)$,
∴cos2∈(-1,0),sin2∈(0,1),
∴e2i表示的復(fù)數(shù)在復(fù)平面中位于第二象限.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的歐拉公式、三角函數(shù)的單調(diào)性與值域,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.將函數(shù)y=cos x的圖象向右平移$\frac{π}{2}$個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,則所得的圖象對(duì)應(yīng)的解析式為( 。
A.y=cos x+1B.y=sin x+1C.y=-cos x+1D.y=-sin x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若指數(shù)函數(shù)y=(2a+1)x在R上是增函數(shù),實(shí)數(shù)a的取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知命題p:設(shè)a,b∈R,則“a+b>4”是“a>2且b>2”的必要不充分條件;命題q:若$\overrightarrow{a}$•$\overrightarrow$<0,則$\overrightarrow{a}$,$\overrightarrow$夾角為鈍角,在命題①p∧q;②¬p∨¬q;③p∨¬q;④¬p∨q中,真命題是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)的定義域?yàn)閇-1,1],求函數(shù)F(x)=f(x)+f(1-x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$.
(1)求A的值;
(2)若B=$\frac{π}{6}$,BC邊上的中線AM=2$\sqrt{21}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y≥2}\\{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$,則目標(biāo)函數(shù)z=3x-y+3的最大值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.lg25+lg4+6${\;}^{lo{g}_{6}2}$+(-8.2)0=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.己知:點(diǎn)A(2,3),B(5,4),C(7,10),若$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ•$\overrightarrow{AC}$(λ∈R).
(1)求點(diǎn)p的坐標(biāo);
(2)試求λ為何值時(shí),點(diǎn)P在第一、三象限平分線上?點(diǎn)P在第三象限內(nèi)?

查看答案和解析>>

同步練習(xí)冊(cè)答案