8.已知數(shù)列{an}的前n項(xiàng)和是${S_n}={n^2}+n$,則數(shù)a4=8.

分析 由已知數(shù)列的前n項(xiàng)和,結(jié)合an=Sn-Sn-1(n≥2)求解.

解答 解:由${S_n}={n^2}+n$,得
${a}_{4}={S}_{4}-{S}_{3}=({4}^{2}+4)-({3}^{2}+3)=8$.
故答案為:8.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,訓(xùn)練了由數(shù)列的前n項(xiàng)和求數(shù)列中的項(xiàng),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.有一名同學(xué)家開了一個(gè)小賣部,他為了研究氣溫對(duì)某種引領(lǐng)銷售的影響,記錄了2015年7月至12月每月15號(hào)下午14時(shí)的氣溫和當(dāng)天賣出的飲料杯數(shù),得到如下資料:
日期7月15日8月15日9月15日10月15日11月15日12月15日
攝氏溫度x(℃)36353024188
飲料杯數(shù)y27292418155
該同學(xué)確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選中的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取2組數(shù)據(jù)恰好是相鄰的兩個(gè)月的概率;
(2)若選中的是8月與12月的兩組數(shù)據(jù),根據(jù)剩下的4組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\hat y=bx+\hat a$.
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線$\hat a=\overline y-\hat b\overline x$的斜率和截距的最小二乘估計(jì)分別為:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,PA⊥平面ABCD,四邊形ABCD為矩形,PA=2$\sqrt{3}$,AB=AD=2,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(Ⅰ)試問當(dāng)點(diǎn)E在BC的何處時(shí),有EF∥平面PAC;
(Ⅱ)設(shè)二面角E-AF-B為30°,求三棱錐A-EBF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=(x-a)2lnx,a∈R.
(I)若x=e是y=f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)y=f(x)-4e2只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,莖葉圖記錄了甲、乙兩組各四名同學(xué)完成某道數(shù)學(xué)題的得分情況,該題滿分為12分.已知甲、乙兩組的平均成績相同,乙組某個(gè)數(shù)據(jù)的個(gè)位數(shù)模糊,記為x.
(Ⅰ)求x的值,并判斷哪組學(xué)生成績更穩(wěn)定;
(Ⅱ)在甲、乙兩組中各抽出一名同學(xué),求這兩名同學(xué)的得分之和低于20分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在△ABC中,∠B=30°,AC=$\sqrt{5}$,D是邊AB上一點(diǎn).
(1)求△ABC面積的最大值;
(2)若CD=2,△ACD的面積為2,∠ACD為銳角,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點(diǎn)P(3,1)、Q(4,-6)在直線3x-2y+a=0的兩側(cè),則a的取值范圍是( 。
A.(-24,7)B.(7,24)C.(-7,24)D.(-24,-7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)集合{$\frac{3}{a}$+b|1≤a≤b≤2}中的最大和最小元素分別是M、m,則M=5,m=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若復(fù)數(shù)z滿足z2+2|$\overline{z}$|=3,求z.

查看答案和解析>>

同步練習(xí)冊答案