13.如圖,在△ABC中,∠B=30°,AC=$\sqrt{5}$,D是邊AB上一點(diǎn).
(1)求△ABC面積的最大值;
(2)若CD=2,△ACD的面積為2,∠ACD為銳角,求BC的長(zhǎng).

分析 (1)由已知及余弦定理,基本不等式可得$AB•BC≤\frac{5}{{2-\sqrt{3}}}=5(2+\sqrt{3})$,利用三角形面積公式即可得解△ABC的面積的最大值.
(2)設(shè)∠ACD=θ,利用三角形面積公式可解得$sinθ=\frac{{2\sqrt{5}}}{5}$,可求$cosθ=\frac{{\sqrt{5}}}{5}$,由余弦定理得即可解得AD的值,利用正弦定理可求sinA,進(jìn)而利用正弦定理可求BC的值.

解答 (本題滿分為12分)
解:(1)∵$∠B={30^0},AC=\sqrt{5}$,
∴由余弦定理可得:$\begin{array}{l}A{C^2}=5=A{B^2}+B{C^2}-2AB•BC•cos∠ABC=A{B^2}+B{C^2}-\sqrt{3}AB•BC≥(2-\sqrt{3})AB•BC,\end{array}$…(2分)
∴$AB•BC≤\frac{5}{{2-\sqrt{3}}}=5(2+\sqrt{3})$,…(4分)
∴${S_{△ABC}}=\frac{1}{2}AB•BCsinB≤\frac{{10+5\sqrt{3}}}{4}$,
所以△ABC的面積的最大值為$\frac{{10+5\sqrt{3}}}{4}$…(6分)
(2)設(shè)∠ACD=θ,在△ACD中,${S_{△ACD}}=\frac{1}{2}AC•CD•sinθ$,
∴$\frac{1}{2}×\sqrt{5}×2×sinθ=2$,解得:$sinθ=\frac{{2\sqrt{5}}}{5}$,∴$cosθ=\frac{{\sqrt{5}}}{5}$…(7分)
由余弦定理得:$A{D^2}=A{C^2}+C{D^2}-2AC•CD•cosθ=5+4-4\sqrt{5}×\frac{{\sqrt{5}}}{5}=5$,
∴$AD=\sqrt{5}$,…(9分)
∵$\frac{AD}{sinθ}=\frac{CD}{sinA}$,∴$\frac{{\sqrt{5}}}{{\frac{{2\sqrt{5}}}{5}}}=\frac{2}{sinA}$,
∴$sinA=\frac{4}{5}$,此時(shí)$\frac{BC}{sinA}=\frac{AC}{sinB}$,
∴$BC=\frac{ACsinA}{sinB}=\frac{{8\sqrt{5}}}{5}$.…(12分)

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形面積公式,基本不等式,同角三角函數(shù)基本關(guān)系式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)點(diǎn)P是雙曲線$\frac{x^2}{4}-{y^2}=1$上的點(diǎn),F(xiàn)1,F(xiàn)2是其焦點(diǎn),且∠F1PF2=90°,則△F1PF2的面積是( 。
A.4B.5C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則ω,φ的值分別是( 。
A.$2\;,\;-\frac{π}{3}$B.$2\;,\;-\frac{π}{6}$C.$4\;,\;-\frac{π}{6}$D.$4\;,\;\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某銀行在我市舉行了“網(wǎng)上銀行、手機(jī)銀行辦理業(yè)務(wù)免費(fèi)政策”滿意度測(cè)評(píng),共有10000人參加了這次測(cè)評(píng)(滿分100分,得分全為整數(shù)),為了解本次測(cè)評(píng)分?jǐn)?shù)情況,從中隨機(jī)抽取了部分人的測(cè)評(píng)分?jǐn)?shù)進(jìn)行統(tǒng)計(jì),整理見(jiàn)如表:
組別 分組 頻數(shù)  頻率
 1[50,60)0.08 
 2[60,70)15 0.3 
 3[70,80)21
 4[80,90)0.12 
 5[90,100)40.08 
合計(jì) 1.00 
(1)求出表中a,b,c的值;
(2)若分?jǐn)?shù)字80(含80分)以上表示對(duì)“網(wǎng)上銀行、手機(jī)銀行辦理業(yè)務(wù)免費(fèi)政策”非常滿意,其中分?jǐn)?shù)在90(含有90分)以上表示“十分滿意”,現(xiàn)從被抽取的“”非常滿意人群中隨機(jī)抽取2人,求至少一人分?jǐn)?shù)是“十分滿意”的概率;
(3)請(qǐng)你根據(jù)樣本數(shù)據(jù)估計(jì)全市的平均測(cè)評(píng)分?jǐn)?shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}的前n項(xiàng)和是${S_n}={n^2}+n$,則數(shù)a4=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在如圖所示的幾何體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EE∥BC,BC=2AD=4,EF=3,AE=BE=2,則該幾何體的體積為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知命題p:m2-4m+3<0;命題q:5-2m>1,若命題“p或q”為真,“非p”為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.定義運(yùn)算$|\begin{array}{l}{a}&\\{c}&77m2gvr\end{array}|$=ad-bc,則符合條件$|\begin{array}{l}{z}&{1+i}\\{2}&{1}\end{array}|$=0的復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(x,-3),且$\overrightarrow{a}$⊥$\overrightarrow$,則向量$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案