已知f(x)=Asin(2x+
π
6
)( A>0)的部分圖象如圖所示.
(Ⅰ)寫出f(x)的最小正周期及 A,x0的值;
(Ⅱ)求f(x)在(-
π
4
,
π
3
)上的取值范圍.
考點:正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)根據(jù)f(x)的部分圖象,可得A 和T.令2x+
π
6
=
π
2
,求得x=
π
6
,求得f(x)位于y軸右側(cè)的第一條對稱軸方程為x=
π
6
,可得x0的值.
(Ⅱ)由x∈(-
π
4
,
π
3
),利用正弦函數(shù)的定義域和值域,求得f(x)在(-
π
4
π
3
)上的取值范圍.
解答: 解:(Ⅰ)根據(jù)f(x)=Asin(2x+
π
6
)( A>0)的部分圖象,可得A=
3
,T=
2
=π,
令2x+
π
6
=
π
2
,求得x=
π
6
,故f(x)位于y軸右側(cè)的第一條對稱軸方程為x=
π
6
,∴x0=2×
π
6
=
π
3

(Ⅱ)由x∈(-
π
4
,
π
3
),可得2x+
π
6
∈(-
π
3
,
6
),sin(2x+
π
6
)∈(-
3
2
,1],
3
sin(2x+
π
6
)∈(-
3
2
3
].
點評:本題主要考查正弦函數(shù)的圖象和性質(zhì),正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在某幼兒園的美術(shù)課上,老師帶領(lǐng)小朋友用水彩筆為本子上兩個大小不同的氣球涂色,要求一個氣球只涂一種顏色,兩個氣球分別涂不同的顏色.小朋友豆豆可用的有暖色系水彩筆紅色、橙色各一支,冷色系水彩筆綠色、藍色、紫色各一支.

(1)豆豆從他可用的五支水彩筆中隨機取出兩支按老師要求給氣球涂色,求兩個氣球同為冷色的概率.
(2)一般情況下,老師發(fā)出開始指令到涂色活動全部結(jié)束需要10分鐘,豆豆至少需要2分鐘完成該項任務.老師發(fā)出開始指令1分鐘后隨時可能來到豆豆身邊查看涂色情況.求當老師來到豆豆身邊時,豆豆已經(jīng)完成任務的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列4個正方體圖形中,l是正方體的一條對角線,點M、N、P分別為其所在棱的中點,能得出直線l⊥面MNP的所有圖形的序號是( 。
A、①④B、①②C、②④D、①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列0,
1
3
,
1
2
3
5
,
2
3
,…的通項公式為(  )
A、an=
n-2
n
B、an=
n-1
n
C、an=
n-1
n+1
D、an=
n-2
n+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀如圖所示的程序框圖,運行相應的程序.若輸出的結(jié)果為
1
2
,則判斷框中應填入( 。
A、n>3?B、n<3?
C、n<4?D、n>4?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,一個確定的凸五邊形 ABCDE,令x=
AB
AC
,y=
AB
AD
,z=
AB
AE
,則x、y、z 的大小順序為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1+sinx÷cosx
1+sinx-cosx
+
1+sinx-cosx
1+sinx+cosx
的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足約束條件
x≤4
x-y+3≥0
2x+y-6≥0
,則
2y
x+1
的取值范圍為
 

查看答案和解析>>

同步練習冊答案