(本題滿分10分)已知圓C過點(4,-1),且與直線相切于點.
(Ⅰ)求圓C的方程;
(II)是否存在斜率為1的直線l,使得l被圓C截得弦AB,以AB為直徑的圓經(jīng)過原點,若存在,求出直線的方程;若不存在,請說明理由.

(Ⅰ)
(Ⅱ)假設存在,設,
 得

以AB為直徑的圓經(jīng)過原點,


 即
 解得

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知以點為圓心的圓與直線相切.過點的動直線與圓相交于兩點,的中點.

(1)求圓的方程;
(2)當時,求直線的方程.(用一般式表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分) 已知圓,內(nèi)接于此圓,點的坐標,為坐標原點.
(Ⅰ)若的重心是,求直線的方程;
(Ⅱ)若直線與直線的傾斜角互補,求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C:.
(1)若圓C的切線在x軸和y軸上的截距相等,且截距不為零,求此切線的方程;
(2)從圓C外一點P向該圓引一條切線,切點為M,O為坐標原點,且有,
求使得取得最小值的點P的坐標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知點P到兩個定點M(-1,0),N(1,0)的距離的比為。
(1)求證點P在一定圓上,并求此圓圓心和半徑;
(2)若點N到直線PM的距離為1,求直線PN的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題12分)已知圓C經(jīng)過點A(1,—1),B(—2,0),C(,1)直線:
(1)求圓C的方程;   
(2)求證:,直線與圓C總有兩個不同的交點;
(3)若直線與圓C交于M、N兩點,當時,求m的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

到圖形上每一個點的距離的最小值稱為點到圖形的距離,那么平面內(nèi)到定圓的距離與到定點的距離相等的點的軌跡不可能是(   )

A.圓 B.橢圓 C.雙曲線的一支 D.直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C與圓相外切,并且與直線相切于點,求圓C的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C與y軸相切,圓心在直線x-3y=0上,且在直線y=x上截得的弦長2 .求 圓C的方程.

查看答案和解析>>

同步練習冊答案