年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,曲線的參數(shù)方程是
是參數(shù)).
(1)寫出曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)求的取值范圍,使得,沒有公共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分) 已知圓的圓心在軸上,半徑為1,直線,被圓所截的弦長為,且圓心在直線的下方.
(I)求圓的方程;
(II)設(shè),若圓是的內(nèi)切圓,求△的面積
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)已知圓C過點(diǎn)(4,-1),且與直線相切于點(diǎn).
(Ⅰ)求圓C的方程;
(II)是否存在斜率為1的直線l,使得l被圓C截得弦AB,以AB為直徑的圓經(jīng)過原點(diǎn),若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分).已知圓與直線相切。
(1)求以圓O與y軸的交點(diǎn)為頂點(diǎn),直線在x軸上的截距為半長軸長的橢圓C方程;
(2)已知點(diǎn)A,若直線與橢圓C有兩個(gè)不同的交點(diǎn)E,F,且直線AE的斜率與直線
AF的斜率互為相反數(shù);問直線的斜率是否為定值?若是求出這個(gè)定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)光線l過點(diǎn)P(1,-1),經(jīng)y軸反射后與圓C:(x-4)2+(y-4)2=1
相切,求光線l所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)O為坐標(biāo)原點(diǎn),曲線x2+y2+2x-6y+1=0上有兩點(diǎn)P、Q,滿足關(guān)于直線x+my+4=0對稱,又滿足·=0.
(1)求m的值;
(2)求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,圓C:,直線:.
(1) 當(dāng)a為何值時(shí),直線與圓C相切;
(2) 當(dāng)直線與圓C相交于A、B兩點(diǎn),且時(shí),求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com