如圖,在圓x2+y2=4上任取一點P,過點P作x軸的垂線段PD,D為垂足,當點P在圓上運動時,線段PD的中點M的軌跡方程是
 
考點:軌跡方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設出P(x0,y0),M(x,y),D(x0,0),由中點坐標公式把P的坐標用M的坐標表示,代入圓的方程得答案.
解答: 解:設P(x0,y0),M(x,y),D(x0,0),
∵M是PD的中點,
x0=x
y0=2y

又P在圓x2+y2=4上,
x02+y02=4,即x2+4y2=4,
x2
4
+y2=1

∴線段PD的中點M的軌跡方程是
x2
4
+y2=1

故答案為:
x2
4
+y2=1
點評:本題考查了軌跡方程的求法,考查了代入法求曲線的軌跡方程,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c分別是∠A、∠B、∠C的對邊,已知
m
=(a,b),
n
=(cosA,cosB),
p
=(2
2
sin
B+C
2
,2sinA),若
m
n
,
p
2=9,求證:△ABC為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是R上的奇函數(shù),且x>0時,f(x)=x3+2x2,則x<0時,f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知對?x≥2,不等式x+
1
x
≥a恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x2+2x-24
的單調(diào)減區(qū)間
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

利用冪函數(shù)圖象,畫出下列函數(shù)的圖象(寫清步驟).
(1)y=(x-2)-
5
3
-1;
(2)y=
x2+2x+2
x2+2x+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin2
π
4
+x)-
3
cos2x+2,且
π
4
≤x≤
π
2
,則f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
x+y≥a
x-y≥-1
,且z=x+ay的最小值為7,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別為A,B,C的對邊,若sinA、sinB、sinC依次成等比數(shù)列,則(  )
A、a,b,c依次成等差數(shù)列
B、a,b,c依次成等比數(shù)列
C、a,c,b依次成等差數(shù)列
D、a,c,b依次成等比數(shù)列

查看答案和解析>>

同步練習冊答案