某校為了研究學生的性別和對待某一活動的態(tài)度(支持和不支持的兩種態(tài)度)的關系,運用2×2列聯(lián)表進行獨立性檢驗,經計算K2=7.069,則所得到的統(tǒng)計學結論是:有________的把握認為“學生性別與支持該活動有關系”( )
附:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
A.0.1% B.1% C.99% D.99.9%
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)仿真模擬卷1練習卷(解析版) 題型:填空題
某農場給某種農作物施肥量x(單位:噸)與其產量y(單位:噸)的統(tǒng)計數據如下表:
施肥量x | 2 | 3 | 4 | 5 |
產量y | 26 | 39 | 49 | 54 |
根據上表,得到回歸直線方程=9.4x+,當施肥量x=6時,該農作物的預報產量是________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷6練習卷(解析版) 題型:解答題
已知A、B、C三個箱子中各裝有兩個完全相同的球,每個箱子里的球,有一個球標著號碼1,另一個球標著號碼2.現從A、B、C三個箱子中各摸出一個球.
(1)若用數組(x,y,z)中的x、y、z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數組(x,y,z)的所有情形,并回答一共有多少種;
(2)如果請您猜測摸出的這三個球的號碼之和,猜中有獎.那么猜什么數獲獎的可能性最大?請說明理由.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷6練習卷(解析版) 題型:選擇題
甲、乙兩人在一次射擊比賽中各射靶5次,兩人成績的條形統(tǒng)計圖如圖所示,則( )
A.甲的成績的平均數小于乙的成績的平均數 B.甲的成績的中位數等于乙的成績的中位數
C.甲的成績的方差小于乙的成績的方差 D.甲的成績的極差小于乙的成績的極差
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷5練習卷(解析版) 題型:解答題
已知橢圓E:=1(a>b>0),F1(-c,0),F2(c,0)為橢圓的兩個焦點,M為橢圓上任意一點,且|MF1|,|F1F2|,|MF2|構成等差數列,點F2(c,0)到直線l:x=的距離為3.
(1)求橢圓E的方程;
(2)若存在以原點為圓心的圓,使該圓的任意一條切線與橢圓E恒有兩個交點A,B,且⊥,求出該圓的方程.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷5練習卷(解析版) 題型:填空題
在平面直角坐標系xOy中,橢圓C的中心為原點,焦點F1,F2在x軸上,離心率為.過F1的直線l交C于A,B兩點,且△ABF2的周長為16,那么C的方程為________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷4練習卷(解析版) 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD是邊長為2的菱形,∠BAD=60°,已知PB=PD=2,PA=.
(1)證明:PC⊥BD;
(2)若E為PA的中點,求三棱錐P-BCE的體積.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷2練習卷(解析版) 題型:解答題
已知函數f(x)=2sin x(sin x+cos x).
(1)求函數f(x)的最小正周期和最大值;
(2)在給出的平面直角坐標系中,畫出函數y=f(x)在區(qū)間上的圖象.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com