函數(shù)y=sinx+
3
cosx
,x∈[0,
π
2
]
的值域?yàn)椋ā 。?/div>
分析:本題是一個(gè)求三角函數(shù)的值域的問題,此類題一般要先對解析式化簡,再根據(jù)所得的三角函數(shù)的單調(diào)性求出函數(shù)在所給區(qū)間上的值域選出正確選項(xiàng)
解答:解:由題意y=sinx+
3?
cosx=2sin(x+
π
3
)

x∈[0,
π
2
]
,故得x+
π
3
[
π
3
,
6
]

所以sin(x+
π
3
)
∈[
1
2
,1],
2sin(x+
π
3
)
∈[1,2]
所求函數(shù)的值域是[1,2]
故選C
點(diǎn)評:本題考查求三角函數(shù)的值域,化簡三角函數(shù)的解析式,再由三角函數(shù)的有界性及單調(diào)性求函數(shù)的值域是求解本題的關(guān)鍵,本題考查了根據(jù)三角函數(shù)公式進(jìn)行變形的技巧,是三角函數(shù)中的基本題,本題的難點(diǎn)就是對解析式的正確化簡
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sinx的圖象上所有點(diǎn)向右平移
π
3
個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來的
1
2
(縱坐標(biāo)不變),所得解析式為y=sin(ωx+φ),則( 。
A、ω=2,φ=
π
6
B、ω=2,φ=-
π
3
C、ω=
1
2
,φ=
π
6
D、ω=
1
2
,φ=-
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx+cosx,x∈[0,π]的單調(diào)增區(qū)間是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有五個(gè)命題:
①若sinα+cosα=1,則sinα•cosα=0.
②在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn).
③函數(shù)y=tanx的圖象的對稱中心一定是(kπ,0),k∈Z.
④x∈R,函數(shù)y=sinx+3|sinx|的值域?yàn)閇0,4].
⑤在△ABC中,若有關(guān)系式tanA=
cosB-cosCsinC-sinB
成立,則△ABC為A=60°的三角形.
其中真命題的序號(hào)是
①⑤
①⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列有五個(gè)命題:
①若sinα+cosα=1,則sinα•cosα=0.
②在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn).
③函數(shù)y=tanx的圖象的對稱中心一定是(kπ,0),k∈Z.
④x∈R,函數(shù)y=sinx+3|sinx|的值域?yàn)閇0,4].
⑤在△ABC中,若有關(guān)系式tanA=
cosB-cosC
sinC-sinB
成立,則△ABC為A=60°的三角形.
其中真命題的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市渝中區(qū)巴蜀中學(xué)高一(下)期中數(shù)學(xué)試卷(解析版) 題型:填空題

下列有五個(gè)命題:
①若sinα+cosα=1,則sinα•cosα=0.
②在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn).
③函數(shù)y=tanx的圖象的對稱中心一定是(kπ,0),k∈Z.
④x∈R,函數(shù)y=sinx+3|sinx|的值域?yàn)閇0,4].
⑤在△ABC中,若有關(guān)系式成立,則△ABC為A=60°的三角形.
其中真命題的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊答案