已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=2x+x2
(1)求x>0時(shí),f(x)的解析式;
(2)若關(guān)于x的方程f(x)=2a2+a有三個(gè)不同的解,求a的取值范圍.

解:(1)任取x>0,則-x<0,
∴f(-x)=-2x+(-x)2=x2-2x.
∵f(x)是奇函數(shù),
∴f(x)=-f(-x)=2x-x2
故x>0時(shí),f(x)=2x-x2
(2)由(1)得y=f(x)有極大值1,極小值-1
∵方程f(x)=2a2+a有三個(gè)不同的解,
∴-1<2a2+a<1.
∴-1<a<
分析:(1)任取x>0,則-x<0,結(jié)合當(dāng)x≤0時(shí),f(x)=2x+x2,f(x)是定義在R上的奇函數(shù),f(x)=-f(-x),可得x>0時(shí),f(x)的解析式;
(2)由(1)可得y=f(x)有極大值1,極小值-1,進(jìn)而可構(gòu)造關(guān)于a的不等式,解不等式可得答案.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,利用奇偶性求函數(shù)的解析,是函數(shù)的綜合應(yīng)用,難度中檔.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x+
5x
的定義域?yàn)椋?,+∞).設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=2x和y軸的垂線,垂足分別為M、N.
(1)|PM|•|PN|是否為定值?若是,求出該定值;若不是,說(shuō)明理由;
(2)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
ax
的定義域?yàn)椋?,+∞),a>0且當(dāng)x=1時(shí)取得最小值,設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值;
(2)問(wèn):PM•PN是否為定值?若是,則求出該定值,若不是,請(qǐng)說(shuō)明理由;
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
(1)求a的取值范圍;
(2)過(guò)曲線y=f(x)外的點(diǎn)P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點(diǎn)分別為A、B.
(ⅰ)證明:a=b;
(ⅱ)請(qǐng)問(wèn)△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案