A. | (1,+∞) | B. | (-∞,1) | C. | (-1,1) | D. | (-∞,-1)∪(1,+∞) |
分析 令g(x)=f(x)-x-1,求出g(x)的單調(diào)性,從而求出不等式的解集即可.
解答 解:令g(x)=f(x)-x-1,則g′(x)=f′(x)-1,
由f′(x)<1,得g′(x)<0,所以g(x)在R上為減函數(shù),
又g(1)=f(1)-1=2-2=0,
所以當(dāng)x>1時,g(x)<g(1)=0,即f(x)<x+1,
所以不等式f(x)<x+1的解集是(1,+∞),
故答案為:(1,+∞),
故選:A.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,令g(x)=f(x)-x-1,求出g(x)的單調(diào)性是解題的關(guān)鍵,本題是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 實軸長為$2\sqrt{5}$,虛軸長為4,漸近線方程為$y=±\frac{{2\sqrt{5}}}{5}x$,離心率$e=\frac{{3\sqrt{5}}}{5}$ | |
B. | 實軸長為$2\sqrt{5}$,虛軸長為4,漸近線方程為$y=±\frac{{\sqrt{5}}}{5}x$,離心率$e=\frac{9}{5}$ | |
C. | 實軸長為$2\sqrt{5}$,虛軸長為4,漸近線方程為$y=±2\sqrt{5}x$,離心率$e=\frac{6}{5}$ | |
D. | 實軸長為$2\sqrt{5}$,虛軸長為8,漸近線方程為$y=±\frac{{\sqrt{5}}}{2}x$,離心率$e=\frac{6}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{2}{9}$ | C. | $-\frac{7}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 兩兩相交的三條直線可確定一個平面 | |
B. | 兩個平面與第三個平面所成的角都相等,則這兩個平面一定平行 | |
C. | 過平面外一點的直線與這個平面只能相交或平行 | |
D. | 和兩條異面直線都相交的兩條直線一定是異面直線 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com