分析 由橢圓的標(biāo)準(zhǔn)方程可知,橢圓的焦點(diǎn)在y軸上,設(shè)雙曲線的標(biāo)準(zhǔn)方程為 $\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{9-{a}^{2}}$=1(a>0),代入點(diǎn)的坐標(biāo),即可求得結(jié)論
解答 解:∵橢圓 $\frac{x^2}{16}+\frac{y^2}{25}=1$的焦點(diǎn)為F1(0,-3),F(xiàn)2(0,3),
∴所求雙曲線的焦點(diǎn)為F1(0,-3),F(xiàn)2(0,3),
設(shè)雙曲線方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{9-{a}^{2}}$=1(a>0),
把(-2,$\sqrt{10}$)代入,得:$\frac{10}{{a}^{2}}$-$\frac{4}{9-{a}^{2}}$=1,
解得a2=5或a2=18(舍),
∴雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1.
點(diǎn)評 本題考查圓錐曲線的簡單性質(zhì)的應(yīng)用,雙曲線方程的求法,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x=2,則x2=4”的逆命題為真命題 | |
B. | 命題“p或q”為真,“非p”為假,則q可真可假 | |
C. | 命題“若log2x2=2,則x=2”的否命題為:“若log2x2=2,則x≠2” | |
D. | 命題“?x∈R使得2x<1”的否定是:“?x∈R均有2x>1” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com