20.如圖1,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的“特征三角形”.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.若橢圓C1:$\frac{{x}^{2}}{4}$+y2=1,直線L:y=mx+n
(1)已知橢圓D:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)與橢圓C1是相似橢圓,求b的值及橢圓D與橢圓C1的相似比;
(2)求點P(0,1)到橢圓C1上點的最大距離
(3)如圖2,設直線L與橢圓E:$\frac{{x}^{2}}{4{λ}^{2}}$+$\frac{{y}^{2}}{{λ}^{2}}$=1(λ>1)相交于A、B兩點,與橢圓C1交于C、D兩點,求證:|AC|=|BD|

分析 (1)分別求得橢圓C1,橢圓D的特征三角形的腰長和底邊長,由相似可得b和相似比;
(2)設橢圓C1上動點B(2cosθ,sinθ),由兩點距離公式,化簡整理,配方,由二次函數(shù)最值求法,即可得到所求最大值;
(3)將直線方程代入兩橢圓方程,消去y,可得x的方程,運用韋達定理和中點坐標公式,驗證AB和CD的中點是否重合,即可得證.

解答 解:(1)由橢圓C1:$\frac{{x}^{2}}{4}$+y2=1焦點在x軸上,a=2,b=1,c=$\sqrt{3}$,
∴橢圓C1的特征三角形是腰長為2,底邊長為2$\sqrt{3}$的等腰三角形,
橢圓D:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)的特征三角形是腰長為4,底邊長為2$\sqrt{16-^{2}}$的等腰三角形,
橢圓D:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)與橢圓C1:$\frac{{x}^{2}}{4}$+y2=1是相似橢圓,
因此兩個特征三角形相似,
∴$\frac{4}{2}$=$\frac{2\sqrt{16-^{2}}}{2\sqrt{3}}$,解得:b2=4,即b=2,
∴橢圓D與橢圓C1的相似比為2:1;
(2)橢圓C1:$\frac{{x}^{2}}{4}$+y2=1,設橢圓C1上動點B(2cosθ,sinθ),
∴|AB|2=(2cosθ)2+(sinθ-1)2=4cos2θ+sin2θ-2sinθ+1=-3(sinθ+$\frac{1}{3}$)2+$\frac{16}{3}$,
當sinθ=-$\frac{1}{3}$時,-3(sinθ+$\frac{1}{3}$)2+$\frac{16}{3}$最大,
即|AB|2最大值為$\frac{16}{3}$,
∴|AB|的最大值為$\frac{4\sqrt{3}}{3}$,
點P(0,1)到橢圓C1上點的最大距離$\frac{4\sqrt{3}}{3}$.
(3)證明:直線L不與x軸垂直,直線L:y=mx+n,A(x1,y1),B(x2,y2),
線段AB的中點(x0,y0),
由直線方程代入橢圓E:$\frac{{x}^{2}}{4{λ}^{2}}$+$\frac{{y}^{2}}{{λ}^{2}}$=1(λ>1),可得
(1+4m2)x2+8mnx+4n2--4λ2=0,
即有x1+x2=-$\frac{8mn}{1+4{m}^{2}}$,x0=-$\frac{4mn}{1+4{m}^{2}}$,
再將直線y=mx+n代入橢圓C1:$\frac{{x}^{2}}{4}$+y2=1,可得
(1+4m2)x2+8mnx+4n2--4λ2=0,
設C(x3,y3),D(x4,y4),
線段AB的中點(x5,y5),
即有x3+x4=-$\frac{8mn}{1+4{m}^{2}}$,x5=-$\frac{4mn}{1+4{m}^{2}}$,
故AB,CD的中點重合.
則|AC|=|BD|.

點評 本題考查新定義的理解和運用,考查橢圓的方程和性質,直線與橢圓方程聯(lián)立,運用韋達定理和中點坐標公式,考查運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知集合A={x|x2+ax-6a2≤0},B={x||x-2|<a},
(1)當a=1時,求A∩B和A∪B;
(2)當B⊆A時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求與橢圓$\frac{x^2}{16}+\frac{y^2}{25}=1$共焦點,且過點(-2,$\sqrt{10}$)的雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ax2-2lnx.
(Ⅰ)若f(x)在x=e處取得極值,求a的值;
(Ⅱ)若x∈(0,e],求f(x)的單調區(qū)間;
(Ⅲ) 設a>$\frac{1}{{e}^{2}}$,g(x)=-5+ln$\frac{x}{a}$,?x1,x2∈(0,e],使得|f(x1)-g(x2)|<9成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設f(x)=$\left\{\begin{array}{l}{{k}^{2}x+{a}^{2}-k(x≥0)}\\{{x}^{2}+({a}^{2}+4a)x+(2-a)^{2}(x<0)}\end{array}\right.$,其中a∈R,若對任意的非零實數(shù)x1,存在唯一的非零實數(shù)x2(x1≠x2),使得f(x2)=f(x1)成立,則k的取值范圍為( 。
A.[-20,-4]B.[-30,-9]C.[-4,0]D.[-9,-4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)y=2${\;}^{-{x^2}+ax-1}}$在[-1,1]上是增函數(shù),則a的取值范圍是{a|a≥2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.經(jīng)銷商經(jīng)銷某種農產品,在一個銷售季度內,每售出1t該產品獲利潤500元,未售出的產品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了130t該農產品.以X(單位:t,100≤X≤150)表示下一個銷售季度內的市場需求量,T(單位:元)表示下一個銷售季度內經(jīng)銷該農產品的利潤.
(I)將T表示為X的函數(shù);
(II)根據(jù)直方圖求利潤T不少于57 000元的頻率;
(Ⅲ)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值 (例如:若需求量X∈[100,110),則取X=105),估計T的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設f(x)是偶函數(shù),且在(0,+∞)上是增函數(shù),又f(5)=0,則使f(x)>0的x的取值范圍是(  )
A.-5<x<0或x>5B.x<-5或x>5C.-5<x<5D.x<-5或0<x<5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)$,其中ω>0,若f(x)相鄰兩對稱軸間的距離為$\frac{π}{2}$.
(Ⅰ) 求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A、B、C的對邊,a=$\sqrt{3}$,b+c=3,f(A)=1,求△ABC的面積.

查看答案和解析>>

同步練習冊答案