設(shè)函數(shù)f(x)定義域?yàn)镽,對于任意的x,y∈R,恒有f(x+y)=f(x)+f(y).
(Ⅰ)求f(0)的值;
(Ⅱ)判斷函數(shù)的奇偶性.
考點(diǎn):函數(shù)奇偶性的性質(zhì),抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)令x=y=0,代入已知條件,即可求得結(jié)果;
(Ⅱ)令y=-x,代入已知條件由函數(shù)奇偶性的定義,即可判定函數(shù)的奇偶性.
解答: 解:(Ⅰ)∵f(x+y)=f(x)+f(y)對于任意x,y∈R都成立.
令x=y=0,則f(0)=f(0)+f(0)
解得f(0)=0;
(Ⅱ)函數(shù)f(x)是R上的奇函數(shù).
證明:令y=-x,則f(0)=f(x)+f(-x)=0,
∴f(-x)=-f(x),
∴函數(shù)f(x)是R上的奇函數(shù).
點(diǎn)評:本題考查抽象函數(shù)的有關(guān)問題,其中賦值法是常用的方法,考查函數(shù)的奇偶性的定義,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanαsinα<0且sinαcosα>0,則α所在象限為( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點(diǎn),結(jié)點(diǎn)之間的箭頭表示它們有網(wǎng)線相聯(lián),連線標(biāo)注的數(shù)字表示該段網(wǎng)線單位時(shí)間內(nèi)可以通過的最大信息量.現(xiàn)從結(jié)點(diǎn)A向結(jié)點(diǎn)G傳遞信息,信息可以分開沿不同的路線同時(shí)傳遞.則單位時(shí)間內(nèi)傳遞的最大信息量為(  )
A、31B、6C、10D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線
3
x+y-2
3
=0的傾斜角為( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,a2=2,a6=6,在等比數(shù)列{bn}中,b3=4,b4=8,
(1)求an及bn
(2)設(shè)數(shù)列{an•bn}的前n項(xiàng)和Sn,求S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB=2,E、F分別為PC、PD的中點(diǎn).
(1)求證:DE⊥平面PBC
(2)在棱BC上確定一點(diǎn)G,使得PA∥面EFG,并寫出證明過程
(3)在(2)成立的條件下,求二面角F-EG-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-2≤x≤4},B={x|x>a}.
(Ⅰ)A∩B=∅,求實(shí)數(shù)a的取值范圍;
(Ⅱ)A∩B≠∅且A∩B≠A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在公差不為0的等差數(shù)列{an}中,a1=-12,且a8,9,a11依次成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的公差;
(Ⅱ)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求Sn的最小值,并求出此時(shí)的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖(1),在等腰直角三角形ABC中,AB=2
2
,∠ABC=90°,點(diǎn)O,M,N分別為線段AC,OC,BC的中點(diǎn),將△ABO和△MNC分別沿BO,MN折起,使二面角A-BO-M和二面角C-MN-O都成直二面角,如圖(2)所示.

(1)求證:AB∥面CMN;
(2)求平面ANC與平面CMN所成的銳二面角的余弦值;
(3)求點(diǎn)M到平面ANC的距離.

查看答案和解析>>

同步練習(xí)冊答案