分析 利用函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,對四個選項分別進行判斷,即可得出結(jié)論.
解答 解:對于①,∵f(x)=ex-ax,
∴f′(x)=ex-a,令f′(x)=ex-a>0,
當(dāng)a≤0時,f′(x)=ex-a>0在x∈R上恒成立,
∴f(x)在R上單調(diào)遞增.
當(dāng)a>0時,∵f′(x)=ex-a>0,∴ex-a>0,解得x>lna,
∴f(x)在(-∞,lna)單調(diào)遞減,在(lna,+∞)單調(diào)遞增.
∵函數(shù)f(x)=ex-ax有兩個零點x1<x2,
∴f(lna)<0,a>0,
∴elna-alna<0,
∴a>e,所以①正確;
對于②,x1+x2=ln(a2x1x2)=2lna+ln(x1x2)>2+ln(x1x2),
取a=$\frac{{e}^{2}}{2}$,f(2)=e2-2a=0,∴x2=2,f(0)=1>0,∴0<x1<1,∴x1+x2>2,所以②正確;
對于③,f(0)=1>0,∴0<x1<1,x1x2>1不一定,所以③不正確;
對于④f(x)在(-∞,lna)單調(diào)遞減,在(lna,+∞)單調(diào)遞增,∴有極小值點x0=lna,且x1+x2<2x0=2lna,所以④正確.
故答案為:①②④.
點評 本題考查了利用導(dǎo)數(shù)求函數(shù)的極值,研究函數(shù)的零點問題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,對于利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,注意導(dǎo)數(shù)的正負對應(yīng)著函數(shù)的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=2lg(x-1) | B. | f(x)=(x+1)2 | C. | f(x)=e-x | D. | f(x)=$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e-1 | B. | e | C. | 1-e-3 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com