A. | $[{\frac{3}{2},2}]$ | B. | $[{\frac{3}{2},2})$ | C. | $[{\frac{5}{4},\frac{4}{3}})$ | D. | $[{\frac{5}{4},\frac{4}{3}}]$ |
分析 由f(x)=0得 $\frac{x}{[x]}$=m,令g(x)=$\frac{x}{[x]}$,作出g(x)的圖象,利用數(shù)形結(jié)合即可得到a的取值范圍.
解答 解:由f(x)=$\frac{x}{[x]}$-m=0得:$\frac{x}{[x]}$=m,
當(dāng)1≤x<2,[x]=1,此時(shí)g(x)=x,此時(shí)1≤g(x)<2,
當(dāng)2≤x<3,[x]=2,此時(shí)g(x)=$\frac{1}{2}x$,此時(shí)1≤g(x)<$\frac{3}{2}$,
當(dāng)3≤x<4,[x]=3,此時(shí)g(x)=$\frac{1}{3}x$,此時(shí)≤1g(x)<$\frac{4}{3}$,
當(dāng)4≤x<5,[x]=4,此時(shí)g(x)=$\frac{1}{4}$x,此時(shí)1≤g(x)<$\frac{5}{4}$,
作出函數(shù)g(x)的圖象,
要使函數(shù)$f(x)=\frac{x}{[x]}-m$(x≥1)有且僅有三個(gè)零點(diǎn),
即函數(shù)g(x)=m有且僅有三個(gè)零點(diǎn),
則由圖象可知$\frac{5}{4}$≤m$<\frac{4}{3}$,
故選:C.
點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)的應(yīng)用,根據(jù)函數(shù)和方程之間的關(guān)系構(gòu)造函數(shù)g(x),利用數(shù)形結(jié)合是解決本題的關(guān)鍵.難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{9}{10}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2-4x+4<0 | B. | ?x∉R,x2-4x+4<0 | ||
C. | $?{x_0}∈R,{x_0}^2-4{x_0}+4<0$ | D. | $?{x_0}∉R,{x_0}^2-4{x_0}+4<0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{3}$ | B. | 2 | C. | $\frac{\sqrt{15}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com