2.有3女2男共5名志愿者要全部分到3個(gè)社區(qū)去參加志愿服務(wù),每個(gè)社區(qū)1到2人,甲、乙兩名女志愿者需到同一社區(qū),男志愿者到不同社區(qū),則不同的分法種數(shù)為12.

分析 根據(jù)題意,先將5名志愿者分成3組,再將分好的三組全排列,對應(yīng)3個(gè)社區(qū),分別求出每一步的情況數(shù)目,由分步計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,先將5名志愿者分成3組,
由于甲、乙兩名女志愿者需到同一社區(qū),將甲乙看成第一組,
將第三名女志愿者與一名男志愿者作為第二組,剩下的男志愿者作為第三組,
則有C22C21C11=2種分組方法;
再將分好的三組全排列,對應(yīng)3個(gè)社區(qū),有A33=6種情況,
則不同的分法種數(shù)為2×6=12種;
故答案為:12.

點(diǎn)評 本題考查排列、組合的應(yīng)用,注意要先按要求分組,再進(jìn)行全排列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)f(x)=min{xlnx,$\frac{{x}^{2}}{{e}^{x}}$}(min{a,b}表示a,b中的較小者),則函數(shù)f(x)的最大值為( 。
A.$\frac{4}{{e}^{2}}$B.2ln2C.$\frac{1}{e}$D.$\frac{3}{2}$ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$y=\sqrt{1-{{log}_2}(x+1)}$的定義域?yàn)椋?1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知直線ax-2by=2(a>0,b>0)過圓x2+y2-4x+2y+1=0的圓心,則$\frac{1}{a}+\frac{1}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將函數(shù)$f(x)=sin({2x-\frac{π}{6}})$的圖象向右平移$\frac{π}{12}$個(gè)單位后得到的圖象的一條對稱軸是(  )
A.$x=\frac{π}{4}$B.$x=\frac{3π}{8}$C.$x=\frac{5π}{12}$D.$x=\frac{7π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若數(shù)列{an}的前n項(xiàng)和為${S_n}=\frac{2}{3}{n^2}-\frac{1}{3}n$,則數(shù)列an=$\frac{4}{3}$n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ex-ax-1(a>0).
(1)若f(x)≥0對任意的x∈R恒成立,求實(shí)數(shù)a的值;
(2)在(1)的條件下,證明:($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n<$\frac{e}{e-1}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,若($\frac{3z}{2}$+$\frac{\overline{z}}{2}$)(1-2$\sqrt{2}$i)=5-$\sqrt{2}$i(i為虛數(shù)單位),則在復(fù)平面內(nèi),復(fù)數(shù)z所對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)l、m是不同的直線,α、β是不同的平面,下列命題中的真命題為(  )
A.若l∥α,m⊥β,l⊥m,則α⊥βB.若l∥α,m⊥β,l⊥m,則α∥β
C.若l∥α,m⊥β,l∥m,則α⊥βD.若l∥α,m⊥β,l∥m,則α∥β

查看答案和解析>>

同步練習(xí)冊答案