分析 (1)求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,即可求函數(shù)f(x)的最小值,f(x)≥0對(duì)任意的x∈R恒成立,即在x∈R上,f(x)min≥0;
(2)證明(1-$\frac{k}{n}$)n≤(${e}^{-\frac{k}{n}}$)n=e-k,即可證明($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n<$\frac{e}{e-1}$(n∈N*).
解答 解:(1)f(x)≥0對(duì)任意的x∈R恒成立,即在x∈R上,f(x)min≥0.
f'(x)=ex-a,
由f'(x)=ex-a=0得x=lna,
由f'(x)>0得,x>lna,此時(shí)函數(shù)單調(diào)遞增,
由f'(x)<0得,x<lna,此時(shí)函數(shù)單調(diào)遞減,
即f(x)在x=lna處取得極小值且為最小值,
最小值為f(lna)=elna-alna-1=a-alna-1,
設(shè)g(a)=a-alna-1,所以g(a)≥0.
由g′(a)=1-lna-1=-lna=0得a=1.
∴g(a)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減,
∴g(a)在a=1處取得最大值,而g(1)=0.
因此g(a)≥0的解為a=1,∴a=1.
證明:(2)由(1)知,對(duì)任意實(shí)數(shù)x均有ex-x-1≥0,即1+x≤ex.
令$x=-\frac{k}{n}$(n∈N*,k=0,1,2,3,…,n-1),則0<1-$\frac{k}{n}$<e${\;}^{-\frac{k}{n}}$.
∴(1-$\frac{k}{n}$)n≤(${e}^{-\frac{k}{n}}$)n=e-k.
∴($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n≤e-(n-1)+e-(n-2)+…+e-2+e-1+1
=$\frac{{1-{e^{-n}}}}{{1-{e^{-1}}}}<\frac{1}{{1-{e^{-1}}}}=\frac{e}{e-1}$.
故($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n<$\frac{e}{e-1}$(n∈N*).
點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性和導(dǎo)數(shù)的之間關(guān)系,以及不等式恒成立問(wèn)題,考查不等式的證明,將不等式恒成立轉(zhuǎn)化為求函數(shù)的最值是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
907 | 966 | 191 | 925 | 271 | 932 | 812 | 458 | 569 | 683 |
431 | 257 | 393 | 027 | 556 | 488 | 730 | 113 | 537 | 989 |
A. | 0.2 | B. | 0.25 | C. | 0.35 | D. | 0.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}({2^n}-1)$ | B. | $\frac{1}{5}(1-{2^{4n}})$ | C. | $\frac{1}{3}({4^n}-1)$ | D. | $\frac{1}{3}(1-{2^n})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com