【題目】函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+2)=f(x).當x∈[0,1]時,f(x)=2x.若在區(qū)間[﹣2,3]上方程ax+2a﹣f(x)=0恰有四個不相等的實數(shù)根,則實數(shù)a的取值范圍是(
A.( ,
B.( ,
C.( ,2)
D.(1,2)

【答案】A
【解析】解:若在區(qū)間[﹣2,3]上方程ax+2a﹣f(x)=0恰有四個不相等的實數(shù)根,等價為f(x)=a(x+2)有四個不相等的實數(shù)根,

即函數(shù)y=f(x)和g(x)=a(x+2),有四個不相同的交點,

∵f(x+2)=f(x),∴函數(shù)的周期是2,

當﹣1≤x≤0時,0≤﹣x≤1,此時f(﹣x)=﹣2x,

∵f(x)是定義在R上的偶函數(shù),

∴f(﹣x)=﹣2x=f(x),

即f(x)=﹣2x,﹣1≤x≤0,

作出函數(shù)f(x)和g(x)的圖象,

當g(x)經(jīng)過A(1,2)時,兩個圖象有3個交點,此時g(1)=3a=2,解得a=

當g(x)經(jīng)過B(3,2)時,兩個圖象有5個交點,此時g(3)=5a=2,解得a=

要使在區(qū)間[﹣2,3]上方程ax+2a﹣f(x)=0恰有四個不相等的實數(shù)根,

,

故選:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正方形的邊長為,已知,將沿邊折起,折起后點在平面上的射影為點,則翻折后的幾何體中有如下描述:①所成角的正切值為;②;③;④平面平面,其中正確的命題序號為___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)將函數(shù)化成的形式,并求函數(shù)的增區(qū)間;

(2)若函數(shù)滿足:對任意都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,側面底面,側棱,底面為直角梯形,其中中點.

1)求證 平面

2)求異面直線所成角的余弦值;

3)線段上是否存在,使得它到平面的距離為?若存在,求出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分16某批發(fā)公司批發(fā)某商品,每件商品進價80元,批發(fā)價120元,該批發(fā)商為鼓勵經(jīng)銷商批發(fā),決定當一次批發(fā)量超過100個時,每多批發(fā)一個,批發(fā)的全部商品的單價就降低0.04元,但最低批發(fā)價不能低于102元.

1當一次訂購量為多少個時,每件商品的實際批發(fā)價為102元?

2當一次訂購量為個, 每件商品的實際批發(fā)價為元,寫出函數(shù)的表達式;

3根據(jù)市場調查發(fā)現(xiàn),經(jīng)銷商一次最大定購量為個,則當經(jīng)銷商一次批發(fā)多少個零件時,該批發(fā)公司可獲得最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市在發(fā)展過程中,交通狀況逐漸受到有關部門的關注,據(jù)有關統(tǒng)計數(shù)據(jù)顯示,從上午6點到中午12點,車輛通過該市某一路段的用時y(分鐘)與車輛進入該路段的時刻t之間的關系可近似地用如下函數(shù)給出: y=
求從上午6點到中午12點,通過該路段用時最多的時刻.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為2的菱形, 底面, ,且

(1)證明:平面平面;

(2)若直線與平面所成的角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣4x,g(x)=﹣x2﹣3. (Ⅰ)求函數(shù)f(x)在x=1處的切線方程;
(Ⅱ)若存在x0∈[e,e2],使得f(x0)<g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱 , , 分別為 , 的中點.

1)求證: 平面 ;

2)求異面直線 所成角的余弦值.

查看答案和解析>>

同步練習冊答案