【題目】已知橢圓的右焦點(diǎn)為,右頂點(diǎn)為,設(shè)離心率為,且滿足,其中為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)(0,1)的直線與橢圓交于兩點(diǎn),求面積的最大值.

【答案】(1) ;(2) .

【解析】

1)設(shè)橢圓的焦半距為c,結(jié)合題意分析可得,結(jié)合橢圓的幾何性質(zhì)可得a、b的值,代入橢圓的方程即可得答案;

2)由題意分析可得直線lx軸不垂直,設(shè)其方程為y=kx+1,聯(lián)立l與橢圓C的方程,可得(4k2+3)x2+8kx﹣8=0,結(jié)合根與系數(shù)的關(guān)系可以用k表示|MN|與Ol的距離,由三角形面積公式計(jì)算可得△OMN的面積 .,由基本不等式分析可得答案.

(1)設(shè)橢圓的焦半距為,則,,.

所以,其中,又,聯(lián)立解得,.

所以橢圓的方程是.

(2)由題意直線不能與軸垂直,否則將無法構(gòu)成三角形.

當(dāng)直線軸不垂直時(shí),設(shè)其斜率為,那么的方程為.

聯(lián)立與橢圓的方程,消去,得.

于是直線與橢圓有兩個(gè)交點(diǎn)的充要條件是,這顯然成立.

設(shè)點(diǎn).

由根與系數(shù)的關(guān)系得,.

所以 ,又的距離.

所以的面 .

,那么 ,當(dāng)且僅當(dāng)時(shí)取等號.

所以面積的最大值是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asin B=-bsin.

(1)求A;

(2)若△ABC的面積S=c2,求sin C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】稱直角坐標(biāo)系中縱橫坐標(biāo)均為整數(shù)的 點(diǎn)為格點(diǎn)”,稱一格點(diǎn)沿坐標(biāo)線到原點(diǎn)的最短路程為該點(diǎn)到原點(diǎn)的格點(diǎn)距離”,格點(diǎn)距離為定值的點(diǎn)的軌跡稱為格點(diǎn)圓”,該定值稱為格點(diǎn)圓的半徑而每一條最短路程稱為一條半徑當(dāng)格點(diǎn)半徑為2005時(shí)格點(diǎn)圓的半徑有________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)紅直播平臺(tái)為確定下一季度的廣告投入計(jì)劃,收集了近6個(gè)月廣告投入量(單位:萬元)和收益(單位:萬元)的數(shù)據(jù)如下表:

月份

1

2

3

4

5

6

廣告投入量/萬元

2

4

6

8

10

12

收益/萬元

14.21

20.31

31.8

31.18

37.83

44.67

用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:

7

30

1464.24

364

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說明理由.

2)殘差絕對值大于2的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:

(i)剔除的異常數(shù)據(jù)是哪一組?

(ii)剔除異常數(shù)據(jù)后,求出(1)中所選模型的回歸方程;

(iii)廣告投入量時(shí),(ii)中所得模型收益的預(yù)報(bào)值是多少?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,,DAB上一點(diǎn),且平面.

1)求證:

2)若四邊形是矩形,且平面平面ABC,直線與平面ABC所成角的正切值等于2,,求三樓柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖設(shè)計(jì)一幅矩形宣傳畫,要求畫面面積為4840,畫面上下邊要留8cm空白,左右要留5cm空白,怎樣確定畫面高與寬的尺寸,才能使宣傳畫所用紙張面積最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求該函數(shù)的值域;

(2)求不等式的解集;

(3)若對于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】建造一條防洪堤,其斷面為等腰梯形,腰與底邊成角為,防洪堤高記為(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其斷面面積為平方米,為了使堤的上面與兩側(cè)面的水泥用料最省,則斷面的外周長)要最小.

1)用表示、;

2)將表示成的函數(shù),如限制在范圍內(nèi),最小為多少米?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的空間幾何體中,平面平面,是邊長為2的等邊三角形,,BE和平面ABC所成的角為,且點(diǎn)E在平面ABC上的射影落在的平分線上.

1)求證:平面ABC;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案