“m=
2
”是“直線y=x+m與圓x2+y2=1相切”的
 
條件.(填“充分不必要”,“必要不充分”,“充分必要”,“既不充分又不必要”)
分析:利用直線與圓相切的判斷條件是解決本題的關(guān)鍵.
解答:解:直線y=x+m與圓x2+y2=1相切?圓心到直線的距離等于半徑,得到
|m|
2
=1
,解出m=±
2
.故“m=
2
”是“直線y=x+m與圓x2+y2=1相切”的充分不必要條件.
故答案為:充分不必要
點(diǎn)評(píng):本題考查了直線與圓相切的等價(jià)條件.屬于基本題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

m=-2是直線x+(m+1)y=2-m與f(x)=-
1
6
m2x3-
1
2
mx
在x=1處的切線垂直的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2、“m=2”是“直線2x+my=0與直線x+y=1平行”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面給出的四個(gè)命題中:
①對(duì)任意的n∈N*,點(diǎn)Pn(n,an)都在直線y=2x+1上是數(shù)列an為等差數(shù)列的充分不必要條件;
②“m=-2”是直線(m+2)x+my+1=0與“直線(m-2)x+(m+2)y-3=0相互垂直”的必要不充分條件;
③設(shè)圓x2+y2+Dx+Ey+F=0(D2+E2-4F>0)與坐標(biāo)軸有4個(gè)交點(diǎn)A(x1,0),B(x2,0),C(0,y1),D(0,y2),則有x1x2-y1y2=0;
④將函數(shù)y=cos2x的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin(2x-
π
6
)
的圖象.
其中是真命題的有
 
(將你認(rèn)為正確的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的( 。
A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案