A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 不確定 |
分析 設直角三角形c為斜邊,則a<c,b<c,若t>0,則新三角形的最長邊是c+t,由余弦定理可得最大角的余弦值,可判最大角為銳角,可得結論.
解答 解:不妨設直角三角形c為斜邊,則a<c,b<c,若t>0,則新三角形的最長邊是c+t,
由題意可得:c2=a2+b2,
設最長邊c+t對的角為α,
由余弦定理可得cosα=$\frac{(a+t)^{2}+(b+t)^{2}-(c+t)^{2}}{2(a+t)(b+t)}$=$\frac{{t}^{2}+2t(a+b-c)}{2(a+t)(b+t)}$>0,
∴新三角形的最大角為銳角,
∴新三角形為銳角三角形,
故選:A.
點評 本題考查三角形形狀的判斷,涉及余弦定理的應用,屬基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 18 | C. | $\sqrt{13}$ | D. | 2$\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1 | C. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com