分析 (1)根據(jù)函數(shù)解析式恒有意義,可得函數(shù)f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x)的定義域?yàn)镽;任取x1<x2,作差f(x1)-f(x2)并判斷符號(hào),結(jié)合函數(shù)單調(diào)性的定義,可得f(x)在R上的單調(diào)性遞增;
(2)若F(x)=f(x)-4且在(-∞,2]上恒有F(x)<0,則F(2)=$\frac{a}{{a}^{2}-1}$(a2-a-2)-4<0,解得答案.
解答 解:(1)∵f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x)(a>0且a≠1)
對(duì)于任意x∈R,函數(shù)的解析式均有意義,
故函數(shù)f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x)的定義域?yàn)镽;
f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x)在R為上增函數(shù),理由如下:
設(shè)x1<x2,
∴f(x1)-f(x2)=$\frac{a}{{a}^{2}-1}$(ax1-a-x1)-$\frac{a}{{a}^{2}-1}$(ax2-a-x2)=$\frac{a}{{a}^{2}-1}$(ax1-ax2)(1+$\frac{1}{{a}^{{x}_{1}}•{a}^{{x}_{2}}}$)=$\frac{a}{{a}^{2}-1}$(ax1-ax2)(1+$\frac{1}{{a}^{{x}_{1+{x}_{2}}}}$),
∵0≤x1<x2,
①當(dāng)0<a<1時(shí),$\frac{a}{{a}^{2}-1}$<0,ax1>ax2,1+$\frac{1}{{a}^{{x}_{1+{x}_{2}}}}$>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在R上的單調(diào)性遞增;
②當(dāng)a>1時(shí),$\frac{a}{{a}^{2}-1}$>0,ax1<ax2,1-$\frac{1}{{a}^{{x}_{1+{x}_{2}}}}$>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在R上的單調(diào)性遞增;
(2)F(x)=f(x)-4在(-∞,2]上也為增函數(shù),
若F(x)<0恒成立,則F(2)=$\frac{a}{{a}^{2}-1}$(a2-a-2)-4<0,
即a-a-1-4<0,即a2-4a-1<0,
解得:2-$\sqrt{5}$<a<2+$\sqrt{5}$,
又由a>0且a≠1得:a∈(0,1)∪(1,2+$\sqrt{5}$).
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的性質(zhì),函數(shù)單調(diào)性的判斷與證明,恒成立問(wèn)題,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,$\frac{\sqrt{2}}{8}$]∪($\frac{5\sqrt{2}}{8}$,1) | B. | [$\frac{\sqrt{2}}{8}$,$\frac{5\sqrt{2}}{8}$] | C. | [0,$\frac{\sqrt{2}}{8}$] | D. | [0,$\frac{5\sqrt{2}}{8}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com