【題目】設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=2,a2=6,且(an+2﹣an+1)﹣(an+1﹣an)=2,若[x]表示不超過x的最大整數(shù),則[ + +…+ ]= .
【答案】2016
【解析】解:∵數(shù)列{an}(n≥1,n∈N)滿足a1=2,a2=6,且(an+2﹣an+1)﹣(an+1﹣an)=2, ∴數(shù)列{an+1﹣an}是等差數(shù)列,公差為2,首項為4.
∴an+1﹣an=4+2(n﹣1)=2n+2.
∴an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2(n﹣1)+2(n﹣2)+…+2+2(n﹣1)+2
= +2n﹣2+2=n2+n.
∴ = = ﹣ .
∴ + +…+ = +…+ ﹣ =1﹣ .
∴[ + +…+ ]= = =2016.
所以答案是:2016.
【考點精析】根據(jù)題目的已知條件,利用數(shù)列的前n項和的相關(guān)知識可以得到問題的答案,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+ x2+2x﹣6,g(x)在[1,4]上的最大值為b,當x∈[1,+∞)時,f(x)≥b恒成立,則a的取值范圍( )
A.a≤2
B.a≤1
C.a≤﹣1
D.a≤0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對正整數(shù)n,有拋物線y2=2(2n﹣1)x,過P(2n,0)任作直線l交拋物線于An , Bn兩點,設(shè)數(shù)列{an}中,a1=﹣4,且an= (其中n>1,n∈N),則數(shù)列{an}的前n項和Tn=( )
A.4n
B.﹣4n
C.2n(n+1)
D.﹣2n(n+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于異面直線,有下列四個命題:
(1)過直線有且僅有一個平面,使//;
(2)過直線有且僅有一個平面,使 ;
(3)在空間中存在平面,使//,//;
(4)在空間中不存在平面,使 , ;
其中正確命題的序號是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2016x+log2016( +x)﹣2016﹣x+2,則關(guān)于x的不等式f(3x+1)+f(x)>4的解集為( )
A.(﹣ ,+∞)
B.(﹣∞,﹣ )
C.(0,+∞)
D.(﹣∞,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面上,我們?nèi)绻靡粭l直線去截正方形的一個角,那么截下的一個直角三角形,按圖所標邊長,由勾股定理有:c2=a2+b2。設(shè)想正方形換成正方體,把截線換成如下圖的截面,這時從正方體上截下三條側(cè)棱兩兩垂直的三棱錐OLMN,如果用S1,S2,S3表示三個側(cè)面面積,S4表示截面面積,那么你類比得到的結(jié)論是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為了解轄區(qū)住戶中離退休老人每天的平均戶外“活動時間”,從轄區(qū)住戶的離退休老人中隨機抽取了100位老人進行調(diào)查,獲得了每人每天的平均戶外“活動時間”(單位:小時),活動時間按照[0,0.5),[0.5,1),…,[4,4.5]從少到多分成9組,制成樣本的頻率分布直方圖如圖所示.
(Ⅰ)求圖中a的值;
(Ⅱ)估計該社區(qū)住戶中離退休老人每天的平均戶外“活動時間”的中位數(shù);
(III)在[1.5,2)、[2,2.5)這兩組中采用分層抽樣抽取9人,再從這9人中隨機抽取2人,求抽取的兩人恰好都在同一個組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,是等腰三角形,且.四邊形是直角梯形,,,,,.
(Ⅰ)求證:平面;
(Ⅱ)當平面 平面時,求四棱錐的體積;
(Ⅲ)請在圖中所給的五個點中找出兩個點,使得這兩點所在的直線與直線垂直,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為, 傾斜角為的直線經(jīng)過橢圓的右焦點且與圓相切.
(1)求橢圓 的方程;
(2)若直線與圓相切于點, 且交橢圓于兩點,射線于橢圓交于點,設(shè)的面積與的面積分別為.
①求的最大值; ②當取得最大值時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com