【題目】如圖,在四棱錐中,是等腰三角形,且.四邊形是直角梯形,,,,,.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)平面 平面時(shí),求四棱錐的體積;
(Ⅲ)請(qǐng)?jiān)趫D中所給的五個(gè)點(diǎn)中找出兩個(gè)點(diǎn),使得這兩點(diǎn)所在的直線(xiàn)與直線(xiàn)垂直,并給出證明.
【答案】(1)見(jiàn)解析; (2) ; (3)見(jiàn)解析.
【解析】
(Ⅰ)由已知AB∥DC,直接利用線(xiàn)面平行的判定證明AB∥平面PDC;(Ⅱ)取BC中點(diǎn)D,由
PB=PC,可得PD⊥BC,結(jié)合面面垂直的性質(zhì)可得PD⊥平面ABCD,則PD為四棱錐P﹣ABCD的
高,求出底面直角梯形的面積,代入棱錐體積公式求四棱錐P﹣ABCD的體積;(Ⅲ)圖中PA
⊥BC.由(Ⅱ)知,PD⊥BC,作CG⊥AB,在直角三角形CGB中,可得cos,再求
解三角形可得AD⊥BC,由線(xiàn)面垂直的判定可得BC⊥平面PAD,從而得到PA⊥BC.
(Ⅰ)證明:∵AB∥DC,且DC平面PDC,AB平面PDC,
∴AB∥平面PDC;
(Ⅱ)解:取BC中點(diǎn)D,∵PB=PC,∴PD⊥BC,
又平面PBC⊥平面ABCD,且平面PBC∩平面ABCD=BC,
∴PD⊥平面ABCD,則PD為四棱錐P﹣ABCD的高,
在底面直角梯形ABCD中,由AB=5,AD=4,DC=3,
得,且BC=.
又PB=PC=3,∴PD=.
∴;
(Ⅲ)解:圖中PA⊥BC.
證明如下:由(Ⅱ)知,PD⊥BC,
作CG⊥AB,在直角三角形CGB中,可得cos,
在三角形ADB中,由余弦定理可得,
則AD2+BD2=AB2,
∴AD⊥BC,
又AD∩PD=D,∴BC⊥平面PAD,則PA⊥BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱臺(tái)的上下底面分別是邊長(zhǎng)為和的正方形,且底面,點(diǎn)為的中點(diǎn),在邊上,且.
(1)求證:∥平面;
(2)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}(n≥1,n∈N)滿(mǎn)足a1=2,a2=6,且(an+2﹣an+1)﹣(an+1﹣an)=2,若[x]表示不超過(guò)x的最大整數(shù),則[ + +…+ ]= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0 , 則稱(chēng)點(diǎn)(x0 , f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心,且“拐點(diǎn)”就是對(duì)稱(chēng)中心.設(shè)函數(shù)g(x)=2x3﹣3x2+ ,則g( )+g( )+…+g( )=( )
A.100
B.50
C.
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABC﹣A1B1C1是底面邊長(zhǎng)為2,高為 的正三棱柱,經(jīng)過(guò)AB的截面與上底面相交于PQ,設(shè)C1P=λC1A1(0<λ<1).、
(1)證明:PQ∥A1B1;
(2)當(dāng) 時(shí),求點(diǎn)C到平面APQB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|x+ |(a>0)
(1)當(dāng)a=2時(shí),求不等式f(x)>3的解集;
(2)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l的參數(shù)方程為 ,(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程是ρ= .
(1)寫(xiě)出直線(xiàn)l的極坐標(biāo)方程與曲線(xiàn)C的直角坐標(biāo)方程.
(2)若點(diǎn)P是曲線(xiàn)C上的動(dòng)點(diǎn),求點(diǎn)P到直線(xiàn)l的距離的最小值,并求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CD是∠ACB的平分線(xiàn),△ACD的外接圓交BC于點(diǎn)E,AB=2AC,
(1)求證:BE=2AD;
(2)求函數(shù)AC=1,BC=2時(shí),求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com