已知x,y滿足
y≤x+2
x+y≤1
y≥ex-e
,則x-y+1的取值范圍是(  )
A、[-2,2]
B、[-1,2]
C、[-2,e]
D、[-1,e]
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義結(jié)合數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
設(shè)z=x-y+1,得y=x+1-z表示,斜率為1縱截距為-z的一組平行直線,
平移直線y=x+1-z,當(dāng)直線y=x+1-z經(jīng)過(guò)點(diǎn)直線y=x+2時(shí),直線y=x+1-z的截距最大,此時(shí)z最小,
此時(shí)z=-1,
當(dāng)直線y=x+1-z與函數(shù)y=ex-e相切時(shí),直線的截距最小,此時(shí)z最大,
函數(shù)的導(dǎo)數(shù)為y′=ex
由y′=ex=1,解得x=0,
此時(shí)y=1-e,即切點(diǎn)(0,1-e),
則z=x-y+1=e,
即-1≤z≤e
故選:D.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,以及導(dǎo)數(shù)的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
5
2
sinAsinx+cos2x(x∈R),其中A、B、C是△ABC的三個(gè)內(nèi)角,且滿足cos(A+
π
4
)=-
2
10
,A∈(
π
4
,
π
2

(1)求函數(shù)f(x)的值域;
(2)若f(x)max=f(B),且AC=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

據(jù)專(zhuān)家估算,我國(guó)每年在餐桌上浪費(fèi)的食物約2000億元,相當(dāng)于2億多人一年的口糧.你是否為“光盤(pán)族”?圍繞此主題,在某城市廣場(chǎng)隨機(jī)調(diào)查了50位中年人和老年人,根據(jù)他們對(duì)此問(wèn)題的回答得到下面的2×2列聯(lián)表:
老年人中年人合計(jì)
非“光盤(pán)族”23032
“光盤(pán)族”81018
合計(jì)104050
(1)由以上統(tǒng)計(jì)的2×2列聯(lián)表分析能否有99.5%的把握認(rèn)為“是光盤(pán)族與年齡層次有關(guān)”,說(shuō)明你的理由;
下面的臨界值表供參考:
k02.0722.7063.8415.0246.6357.87910.828
P( K2≥k00.150.100.050.0250.0100.0050.001
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,n=a+b+c+d.
(2)若參加此次調(diào)查的50人中,甲、乙等6人恰為糧食局的工作人員,現(xiàn)在要從這6人中,隨機(jī)選出2人統(tǒng)計(jì)調(diào)查結(jié)果,求甲、乙兩人至少有1人入選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面四邊形ABCD中,AB=4,AD=2,∠DAB=60°,∠BCD=120°.
(1)當(dāng)BC=CD時(shí),求△BCD的面積;
(2)設(shè)∠CDB=θ,記四邊形ABCD的周長(zhǎng)為f(θ),求f(θ)的方程,并求出它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
b
=-10,|
a
|=5,|
b
|=4,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知質(zhì)點(diǎn)M按規(guī)律s=2t2+3做直線運(yùn)動(dòng)(位移單位:cm,時(shí)間單位:s).
(1)當(dāng)t=2,△t=0.01時(shí),求
△s
△t
;   
(2))當(dāng)t=2,△t=0.001時(shí),求
△s
△t
;   
(3)當(dāng)質(zhì)點(diǎn)M在t=2時(shí)的瞬時(shí)速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種波的傳播是由曲線f(x)=Asin(ωx+φ)(A>0)來(lái)實(shí)現(xiàn)的,我們把函數(shù)解析式f(x)=Asin(ωx+φ)稱為“波”,把振幅都是A 的波稱為“A 類(lèi)波”,把兩個(gè)解析式相加稱為波的疊加.
(1)已知“1 類(lèi)波”中的兩個(gè)波f1(x)=sin(x+φ1)與f2(x)=sin(x+φ2)疊加后仍是“1類(lèi)波”,求φ21的值;
(2)在“A 類(lèi)波“中有一個(gè)是f1(x)=Asinx,從 A類(lèi)波中再找出兩個(gè)不同的波f2(x),f3(x),使得這三個(gè)不同的波疊加之后是平波,即疊加后f1(x)+f2(x)+f3(x),并說(shuō)明理由.
(3)在n(n∈N,n≥2)個(gè)“A類(lèi)波”的情況下對(duì)(2)進(jìn)行推廣,使得(2)是推廣后命題的一個(gè)特例.只需寫(xiě)出推廣的結(jié)論,而不需證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面α與平面β相交于直線m,直線a在平面α內(nèi),直線b在平面β內(nèi),且b⊥m,則“α⊥β”是“a⊥b”的(  )
A、必要不充分條件
B、充分不必要條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,在(-1,1)內(nèi)有零點(diǎn)且單調(diào)遞增的是( 。
A、y=log2x
B、y=2x-1
C、y=x2-2
D、y=-x3

查看答案和解析>>

同步練習(xí)冊(cè)答案