【題目】如圖,點(diǎn)是圓內(nèi)的一個定點(diǎn),點(diǎn)是圓上的任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動時(shí),點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)點(diǎn), ,直線與軸交于點(diǎn),直線與軸交于點(diǎn),求的值.
【答案】(1) (2)
【解析】試題分析:
本題考查曲線方程的求法和直線與圓錐曲線的位置關(guān)系.(1)由條件根據(jù)定義法求解曲線方程.(2)設(shè)出直線的方程,然后根據(jù)根與系數(shù)的關(guān)系求得點(diǎn)的坐標(biāo).由點(diǎn), , 共線可得點(diǎn)的橫坐標(biāo),可得直線與軸的交點(diǎn)縱坐標(biāo)為,由此可得, ,計(jì)算后可得結(jié)果.
試題解析:
(1)由題意得點(diǎn)在的垂直平分線上,
所以,
∴.
∴點(diǎn)的軌跡是以為焦點(diǎn),長軸長為4的橢圓,
設(shè)橢圓的方程為,
則, ,
∴.
所以曲線的方程為.
(2)由題設(shè)知直線的斜率存在.設(shè)直線的方程為,
由消去整理得
,
設(shè), ,
則,
又,
所以,
所以,
因?yàn)辄c(diǎn), , 共線,故,
即,
所以,
又直線與軸的交點(diǎn)縱坐標(biāo)為,
所以, ,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點(diǎn)P到定點(diǎn)F(0,1)的距離比它到直線的距離小1,設(shè)動點(diǎn)P的軌跡為曲線C,過點(diǎn)F的直線交曲線C于A、B兩個不同的點(diǎn),過點(diǎn)A、B分別作曲線C的切線,且二者相交于點(diǎn)M.
(Ⅰ)求曲線C的方程;
(Ⅱ)求證: ;
(Ⅲ)求△ABM的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù), ).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)函數(shù)有兩個零點(diǎn)時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中, 平面, , , , , , , 是的中點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn), , 是橢圓上的點(diǎn),且,設(shè)動點(diǎn)滿足.
(Ⅰ)求動點(diǎn)的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點(diǎn),求三角形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在極坐標(biāo)系和直角坐標(biāo)系中,極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的非負(fù)半軸重合,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)判斷曲線與曲線的位置關(guān)系,若兩曲線相交,求出兩交點(diǎn)間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上、下、左、右四個頂點(diǎn)分別為x軸正半軸上的某點(diǎn)滿足.
(1)求橢圓的方程;
(2)設(shè)該橢圓的左、右焦點(diǎn)分別為,點(diǎn)在圓上,且在第一象限,過作圓的切線交橢圓于,求證:△的周長是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體ABCDE,四邊形ABDE是矩形,△ABC是正三角形,AB=1,AE=2,F是線段BC上一點(diǎn),直線BC與平面ABD所成角為30°,CE∥平面ADF.
(1)試確定F的位置;
(2)求三棱錐A-CDF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB和AA1的中點(diǎn).
求證:(1)E、C、D1、F四點(diǎn)共面;
(2)CE、D1F、DA三線共點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com