【題目】的內(nèi)角的對(duì)邊分別為,已知
(1)求;
(2)若,求面積的最大值.
【答案】(1);(2).
【解析】
試題分析:(1)由正弦定理及兩角和的正弦公式,三角形內(nèi)角和公式可得,進(jìn)而得;(2)由余弦定理可得,由基本不等式,得,代入三角形面積公式,可得三角形面積的最大值.
試題解析: (1)因?yàn)?/span>
所以由正弦定理得...........................2分
所以即.....................3分
因?yàn)?/span>,所以,又,解得...................5分;
(2)由余弦定理得,即...................6分
由不等式得,當(dāng)且僅當(dāng)時(shí),取等號(hào),所以,
解得...................8分
所以的面積為
所以面積的最大值為...................10分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯(cuò)誤的是 ( )
A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面
B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2-2x+4y-4=0,
(1)求圓C關(guān)于直線對(duì)稱的圓的方程;
(2)問是否存在斜率為1的直線l,使l被圓C截得弦AB,且以AB為直徑的圓經(jīng)過點(diǎn)?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍x>0,下表是y與x的幾組對(duì)應(yīng)值:
x | … | 1 | 2 | 3 | 5 | 7 | 9 | … |
y | … | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | … |
小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小騰的探究過程,請(qǐng)補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表格中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對(duì)應(yīng)的函數(shù)值y約為
②該函數(shù)的一條性質(zhì):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)的坐標(biāo)為,圓的方程為,動(dòng)點(diǎn)在圓上運(yùn)動(dòng),點(diǎn)為延長線上一點(diǎn),且.
(1)求點(diǎn)的軌跡方程.
(2)過點(diǎn)作圓的兩條切線, ,分別與圓相切于點(diǎn), ,求直線的方程,并判斷直線與點(diǎn)所在曲線的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
已知平面直角坐標(biāo)系,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)). 點(diǎn)是曲線上兩點(diǎn),點(diǎn)的極坐標(biāo)分別為.
(1)寫出曲線的普通方程和極坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為參數(shù)).以O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是,射線與圓C的交點(diǎn)為O、P,與直線的交點(diǎn)為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和Sn滿足:2Sn=3an﹣6n(n∈N*) (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,其中常數(shù)λ>0,若數(shù)列{bn}為遞增數(shù)列,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“丁香”和“小花”是好朋友,她們相約本周末去爬歌樂山,并約定周日早上8:00至8:30之間(假定她們?cè)谶@一時(shí)間段內(nèi)任一時(shí)刻等可能的到達(dá))在歌樂山健身步道起點(diǎn)處會(huì)合,若“丁香”先到,則她最多等待“小花”15分鐘.若“小花”先到,則她最多等待“丁香”10分鐘,若在等待時(shí)間內(nèi)對(duì)方到達(dá),則她倆就一起快樂地爬山,否則超過等待時(shí)間后她們均不再等候?qū)Ψ蕉陋?dú)爬山,則“丁香”和“小花”快樂地一起爬歌樂山的概率是(用數(shù)字作答)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com