設(shè)a、b為兩個(gè)正數(shù),且a+b=1,則使得+≥μ恒成立的μ的取值范圍是________.
(-∞,4]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知F1、F2分別是橢圓=1(a>b>0)的左、右焦點(diǎn),A、B分別是此橢圓的右頂點(diǎn)和上頂點(diǎn),P是橢圓上一點(diǎn),O是坐標(biāo)原點(diǎn),OP∥AB,PF1⊥x軸,F(xiàn)1A=+,則此橢圓的方程是________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓=1(a>b>c>0,a2=b2+c2)的左、右焦點(diǎn)分別為F1,F(xiàn)2,若以F2為圓心,b-c為半徑作圓F2,過(guò)橢圓上一點(diǎn)P作此圓的切線(xiàn),切點(diǎn)為T(mén),且PT的最小值為(a-c),則橢圓的離心率e的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
觀(guān)察下列各式:a+b=1;a2+b2=3;a3+b3=4;a4+b4=7;a5+b5=11;…;則a10+b10=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若P0(x0,y0)在橢圓=1(a>b>0)外,過(guò)P0作橢圓的兩條切線(xiàn)的切點(diǎn)分別為P1、P2,則切點(diǎn)弦P1P2所在的直線(xiàn)方程是=1.那么對(duì)于雙曲線(xiàn)則有如下命題:若P0(x0,y0)在雙曲線(xiàn)=1(a>0,b>0)外,過(guò)P0作雙曲線(xiàn)的兩條切線(xiàn)的切點(diǎn)分別為P1、P2,則切點(diǎn)弦P1P2所在的直線(xiàn)方程是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知下列三個(gè)方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一個(gè)方程有實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,ABCD為直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,P為平面ABCD外一點(diǎn),且PB⊥BD.
(1) 求證:PA⊥BD;
(2) 若PC與CD不垂直,求證:PA≠PD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除”的第二步是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)().
(Ⅰ)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(Ⅱ)若,且關(guān)于的方程在上恰有兩個(gè)不等的實(shí)根,
求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)各項(xiàng)為正數(shù)的數(shù)列滿(mǎn)足,(),
求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com