已知F1、F2分別是橢圓=1(a>b>0)的左、右焦點,A、B分別是此橢圓的右頂點和上頂點,P是橢圓上一點,O是坐標原點,OP∥AB,PF1⊥x軸,F(xiàn)1A=+,則此橢圓的方程是________________.
科目:高中數(shù)學 來源: 題型:
如圖,已知橢圓C的方程為+y2=1,A、B是四條直線x=±2,y=±1所圍成的矩形的兩個頂點.
(1) 設(shè)P是橢圓C上任意一點,若,求證:動點Q(m,n)在定圓上運動,并求出定圓的方程;
(2) 若M、N是橢圓C上兩個動點,且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知雙曲線C1:=1(a>0,b>0)的離心率為2.若拋物線C2:x2=2py(p>0)的焦點到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的左焦點為F,右頂點為A,動點M 為右準線上一點(異于右準線與x軸的交點),設(shè)線段FM交橢圓C于點P,已知橢圓C的離心率為,點M的橫坐標為.
(1) 求橢圓C的標準方程;
(2) 設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)F1,F(xiàn)2是雙曲線x2-=1的兩個焦點,P是雙曲線上的一點,且3PF1=4PF2,則△PF1F2的面積等于________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com