【題目】已知一直線與橢圓4x2+9y2=36相交于A、B兩點(diǎn),弦AB的中點(diǎn)坐標(biāo)為M(1,1),則直線AB方程為( )
A.4x+9y﹣13=0
B.4x+9y+13=0
C.9x+4y﹣13=0
D.9x+4y+13=0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直三棱柱中, , , ,點(diǎn)是線段上的動(dòng)點(diǎn).
(1)當(dāng)點(diǎn)是的中點(diǎn)時(shí),求證: 平面;
(2)線段上是否存在點(diǎn),使得平面平面?若存在,試求出的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若三邊的長(zhǎng)為連續(xù)的三個(gè)正整數(shù),且A>B>C,3b=20acos A,則sin A:sin B:sin C為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線 與橢圓 有相同的焦點(diǎn);
②以拋物線的焦點(diǎn)弦(過(guò)焦點(diǎn)的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的;
③設(shè)A、B為兩個(gè)定點(diǎn),k為常數(shù),若|PA|﹣|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
④過(guò)定圓C上一點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若 則動(dòng)點(diǎn)P的軌跡為橢圓.其中正確的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為定義在上的奇函數(shù).
(Ⅰ)求的解析式;
(Ⅱ)判斷在定義域上的單調(diào)性,并用函數(shù)單調(diào)性定義給予證明;
(Ⅲ)若關(guān)于的方程在上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)有一長(zhǎng)度為2的線段AB與一動(dòng)點(diǎn)P,若滿足|PA|+|PB|=8,則|PA|的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)體服裝店經(jīng)營(yíng)某種服裝,在某周內(nèi)獲得的純利潤(rùn)y(單位:元)與該周每天銷售這種服裝的件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表:
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
(1)求純利潤(rùn)y與每天銷售件數(shù)x之間的回歸方程;
(2)若該周內(nèi)某天銷售服裝20件,估計(jì)可獲得純利潤(rùn)多少元?
已知:=280,xiyi=3 487,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三點(diǎn)A(1,2),B(﹣3,0),C(3,﹣2).
(1)求證△ABC為等腰直角三角形;
(2)若直線3x﹣y=0上存在一點(diǎn)P,使得△PAC面積與△PAB面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要得到函數(shù)y=sin(4x﹣ )的圖象,只需將函數(shù)y=sin4x的圖象( )
A.向左平移 單位
B.向右平移 單位
C.向左平移 單位
D.向右平移 單位
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com