8.已知數(shù)列{an}是一個(gè)公差不為0的等差數(shù)列,且a2=2,并且a3,a6,a12成等比數(shù)列,則$\frac{1}{{a}_{1}{a}_{3}}$+$\frac{1}{{a}_{2}{a}_{4}}$+$\frac{1}{{a}_{3}{a}_{5}}$+…+$\frac{1}{{a}_{n}{a}_{n+2}}$=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.

分析 通過(guò)a3,a6,a12成等比數(shù)列及a2=2可得數(shù)列{an}的通項(xiàng),利用裂項(xiàng)相消法計(jì)算即得結(jié)論.

解答 解:設(shè)數(shù)列{an}的公差為d,
又∵a2=2,
∴a3=2+d,a6=2+4d,a12=2+10d,
∵a3,a6,a12成等比數(shù)列,
∴(2+4d)2=(2+d)(2+10d),
∴d=1或d=0(舍),
∴數(shù)列{an}的通項(xiàng)為:an=n,
∴$\frac{1}{{a}_{n}{a}_{n+2}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴$\frac{1}{{a}_{1}{a}_{3}}$+$\frac{1}{{a}_{2}{a}_{4}}$+$\frac{1}{{a}_{3}{a}_{5}}$+…+$\frac{1}{{a}_{n}{a}_{n+2}}$
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-2}$-$\frac{1}{n}$+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$,
故答案為:$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.

點(diǎn)評(píng) 本題考查求數(shù)列的通項(xiàng),涉及到等比數(shù)列的性質(zhì)等知識(shí),利用裂項(xiàng)相消法是解決本題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,M,N分別是C1D1,CC1的中點(diǎn),則直線B1N與平面BDM所成角的正弦值為$\frac{{\sqrt{5}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.經(jīng)過(guò)點(diǎn)P(1,0),斜率為$\frac{3}{4}$的直線和拋物線y2=x交于A、B兩點(diǎn),若線段AB中的點(diǎn)為M,則M的坐標(biāo)為($\frac{17}{9}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若同時(shí)拋3枚硬幣,事件“恰有兩枚正面向上”的概率為a,“至少一枚正面向上”的概率為b,則函數(shù)y=logb(x-8a)過(guò)定點(diǎn)(4,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=sin(x+$\frac{π}{6}$)-cos(x+$\frac{π}{3}$)+2sin2$\frac{x}{2}$.
(1)若x∈[0,π],求f(x)的值域;
(2)設(shè)三角形的內(nèi)角∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別為a、b、c,若a=2,b=2$\sqrt{2}$,f(A)=1.求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,四棱錐P-ABCD中,底面ABCD為正方形,PA=PD,PA⊥平面PDC,
E為棱PD的中點(diǎn).
(1)求證:平面PAD⊥平面ABCD;
(2)求二面角E-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在正三棱柱中,AB=2,AA1=2,由頂點(diǎn)B沿棱柱側(cè)面經(jīng)過(guò)棱AA1到頂點(diǎn)C1的最短路線與棱AA1的交點(diǎn)記為M,求:
(Ⅰ)三棱柱的側(cè)面展開圖的對(duì)角線長(zhǎng);
(Ⅱ)該最短路線的長(zhǎng)及$\frac{{{A_1}M}}{AM}$的值;
(Ⅲ)平面C1MB與平面ABC所成二面角(銳角).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖所示,PA⊥平面ABC,點(diǎn)C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點(diǎn)E為線段PB的中點(diǎn),點(diǎn)M在$\widehat{AB}$上,且OM∥AC.
(1)求證:平面MOE∥平面PAC;
(2)求證:平面PAC⊥PCB;
(3)設(shè)二面角M-BP-C的大小為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某校開展校園文化活動(dòng),其中一項(xiàng)是背誦古詩(shī)100首,在該項(xiàng)進(jìn)行一段時(shí)間后,隨機(jī)抽取40人,統(tǒng)計(jì)調(diào)查了他們會(huì)背古詩(shī)的首數(shù),得到的數(shù)據(jù)如下:
20 21 22 23 24 24 25 26 26 27 28 29 29 29 30 30 30 31 31 31
32 32 33 34 35 35 36 36 37 38 38 38 40 40 41 42 42 43 46 48
(1)根據(jù)調(diào)查數(shù)據(jù)補(bǔ)全如下分組為[20,25),[25,30),…[40,45),[45,50)的頻率直方圖;

(2)從會(huì)背的古詩(shī)首數(shù)在區(qū)間[30,40)內(nèi)的同學(xué)中隨機(jī)抽取2人,求會(huì)背的古詩(shī)首數(shù)在區(qū)間[30,35),[35,40)內(nèi)各有一人的概率;
(3)從會(huì)背的古詩(shī)首數(shù)在區(qū)間[30,40)內(nèi)的同學(xué)中隨機(jī)抽取2人,求會(huì)背的古詩(shī)首數(shù)在區(qū)間[35,40)內(nèi)的人數(shù),ξ的概率分別列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案