10.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1的一個焦點是(-4,0),則其離心率是$\frac{4}{5}$.

分析 利用橢圓的焦點坐標,判斷橢圓長軸所在的軸,求出a,然后求解離心率.

解答 解:因為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1的一個焦點為(-4,0),
所以橢圓的長軸在x軸,所以a2-9=16,所以a=5,
所以橢圓的離心率為:$\frac{c}{a}$=$\frac{4}{5}$.
故答案為:$\frac{4}{5}$.

點評 本題考查橢圓的基本性質的應用,橢圓的焦點坐標的應用,離心率的求法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知平面上不同兩點P(a,b),Q(3-b,3-a),線段PQ垂直平分線為直線l,則圓C:(x-2)2+(y-3)3=1關于l的對稱圓的方程x2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.我國2009年至2015年生活垃圾無害化處理量y(單位:億噸)的數(shù)據(jù)如下表:
年份2009201020112012201320142015
年份代號i1234567
年生活垃圾無害化處理量y0.71.11.42.22.63.03.7
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,預測2017年我國生活垃圾無害化處理量.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i-n\overline{t}\overline{y}}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=ax3+4x-4(a∈R),曲線y=f(x)在點(1,f(1))處的切線與直線3x-y+2=0平行.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若函數(shù)g(x)=f(x)-m有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.將函數(shù)圖象y=4sin(6x+$\frac{3π}{5}$)上所有點的橫坐標變?yōu)樵瓉淼?倍,再向右平移$\frac{π}{5}$個單位長度,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)圖象的對稱軸方程是x=$\frac{kπ}{2}$+$\frac{3π}{20}$,k∈Z..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,直三棱柱ABC-A1B1C1的底面為正三角形,E、F分別是BC、CC1的中點
(1)證明:平面AEF⊥平面B1BCC1;
(2)若D為AB中點,∠CA1D=45°且AB=2,設三棱錐F-AEC的體積為V1,三棱錐F-AEC與三棱錐A1-ACD的公共部分的體積為V2,求$\frac{{V}_{1}}{{V}_{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知α、β∈(0,π),且tanα、tanβ是方程x2-5x+6=0的兩根.
(1)求tan(α+β)的值;
(2)求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.雙曲線:$\frac{{x}^{2}}{{n}^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(n>0,m>0)的兩個焦點為F1,F(xiàn)2,P在雙曲線上.且滿足∠F1PF1=$\frac{π}{3}$,S${\;}_{△{F}_{1}P{F}_{2}}$=1,則m=$\root{4}{\frac{1}{3}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖是一個物體的三視圖,根據(jù)圖中尺寸(單位:cm),它的體積為32+8πcm3

查看答案和解析>>

同步練習冊答案