已知滿足不等式,求函數(shù)的最小值.

  
 令,則     y=
(1)當(dāng)a
(2)當(dāng)
(3)當(dāng)a>16時(shí)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若定義在上的函數(shù)滿足條件:存在實(shí)數(shù),使得:
⑴ 任取,有是常數(shù));
⑵ 對(duì)于內(nèi)任意,當(dāng),總有。
我們將滿足上述兩條件的函數(shù)稱為“平頂型”函數(shù),稱為“平頂高度”,稱為“平頂寬度”。根據(jù)上述定義,解決下列問(wèn)題:
(1)函數(shù)是否為“平頂型”函數(shù)?若是,求出“平頂高度”和“平頂寬度”;若不是,簡(jiǎn)要說(shuō)明理由。
(2) 已知是“平頂型”函數(shù),求出 的值。
(3)對(duì)于(2)中的函數(shù),若上有兩個(gè)不相等的根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為實(shí)數(shù),,),
(1)若,且函數(shù)的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/4e/c7/4e0c766e6e2cc08cd346da50b7498332.gif" style="vertical-align:middle;" />,求的表達(dá)式;
(2)在(1)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè),,且函數(shù)為偶函數(shù),判斷是否大于?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
已知函數(shù)),
(1)求函數(shù)的最小值;
(2)已知,命題p:關(guān)于x的不等式對(duì)任意恒成立;命題q:不等式 對(duì)任意恒成立.若“pq”為真,“pq”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知二次函數(shù)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),且滿足,設(shè)函數(shù),其中m為常數(shù)且
(1)求函數(shù)的解析式;
(2)判斷函數(shù)的單調(diào)性并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)二次函數(shù)f(x)滿足且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間上,y= f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(-1)=0,試判斷函數(shù)f(x)零點(diǎn)的個(gè)數(shù);
(2)是否存在a,b,c∈R,使f(x)同時(shí)滿足以下條件:
①對(duì)任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②對(duì)任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,請(qǐng)說(shuō)
明理由。
(3)若對(duì)任意x1、x2∈R且x1<x2,f(x1)≠f(x2),試證明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
在一個(gè)月內(nèi)分批購(gòu)入每張價(jià)值為20元的書(shū)桌共36臺(tái),每批都購(gòu)入x臺(tái)(x是正整數(shù)),且每批均需付運(yùn)費(fèi)4元,儲(chǔ)存購(gòu)入的書(shū)桌一個(gè)月所付的保管費(fèi)與每批購(gòu)入書(shū)桌的總價(jià)值(不含運(yùn)費(fèi))成正比,若每批購(gòu)入4臺(tái),則該月需用去運(yùn)費(fèi)和保管費(fèi)共52元,現(xiàn)在全月只有48元資金可以用于支付運(yùn)費(fèi)和保管費(fèi).
(1)求該月需用去的運(yùn)費(fèi)和保管費(fèi)的總費(fèi)用
(2)能否恰當(dāng)?shù)匕才琶颗M(jìn)貨的數(shù)量,使資金夠用?寫(xiě)出你的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/ad/a/deddt1.gif" style="vertical-align:middle;" />,并滿足(1)對(duì)于一切實(shí)數(shù),都有;
(2)對(duì)任意的;  (3);
利用以上信息求解下列問(wèn)題:
(1)求;
(2)證明
(3)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案