分析 根據(jù)題意,AC為經(jīng)過(guò)點(diǎn)P的圓的直徑,而BD是與AC垂直的弦.因此算出PM的長(zhǎng),利用垂直于弦的直徑的性質(zhì)算出BD長(zhǎng),根據(jù)四邊形的面積公式即可算出四邊形ABCD的面積.
解答 解:∵圓的方程為(x-1)2+(y-1)2=9,
∴圓心坐標(biāo)為M(1,1),半徑r=3.
∵P(2,2)是該圓內(nèi)一點(diǎn),
∴經(jīng)過(guò)P點(diǎn)的直徑是圓的最長(zhǎng)弦,且最短的弦是與該直徑垂直的弦.
結(jié)合題意,得AC是經(jīng)過(guò)P點(diǎn)的直徑,BD是與AC垂直的弦.
∵|PM|=√(1−2)2+(1−2)2=√2,
∴由垂徑定理,得|BD|=2√7.
因此,四邊形ABCD的面積是S=12|AC|•|BD|=12×6×2√7=6√7.
故答案為6√7
點(diǎn)評(píng) 本題給出圓內(nèi)一點(diǎn)P,求經(jīng)過(guò)點(diǎn)P最長(zhǎng)的弦與最短的弦構(gòu)成的四邊形的面積.著重考查了圓的標(biāo)準(zhǔn)方程、兩點(diǎn)間的距離公式和垂直于弦的直徑的性質(zhì)等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3或√41 | B. | 3 | C. | √41 | D. | ±3或±√41 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | \frac{π}{12} | B. | \frac{5π}{12} | C. | \frac{π}{6} | D. | \frac{π}{4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2\sqrt{3} | B. | 4$ | C. | \frac{\sqrt{3}}{2} | D. | \frac{2\sqrt{3}}{3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | \frac{1}{2} | B. | \frac{2}{3} | C. | \frac{3}{4} | D. | \frac{5}{6} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com