17.在平行四邊形ABCD中,O是對角線的交點(diǎn),E是邊CD上一點(diǎn),且CE=$\frac{1}{3}$CD,$\overrightarrow{OE}$=m$\overrightarrow{AB}$+n$\overrightarrow{AD}$,則m+n=( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{5}{6}$

分析 由$\overrightarrow{OE}=\overrightarrow{OC}+\overrightarrow{CE}=\frac{1}{2}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{CD}$=$\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}+\frac{1}{3}\overrightarrow{BA}=\frac{1}{6}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}$,即可求出m,n即可.

解答 解:$\overrightarrow{OE}=\overrightarrow{OC}+\overrightarrow{CE}=\frac{1}{2}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{CD}$
=$\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}+\frac{1}{3}\overrightarrow{BA}=\frac{1}{6}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}$
∴m+n=$\frac{1}{6}+\frac{1}{2}=\frac{2}{3}$
故選:B.

點(diǎn)評 本題考查了向量的線性運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知圓的方程為(x-1)2+(y-1)2=9,P(2,2)是該圓內(nèi)一點(diǎn),過點(diǎn)P的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積是6$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若圓錐的側(cè)面展開圖是圓心角為90°的扇形,則這個圓錐的側(cè)面積與底面積的比是4:1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.給出命題:“若b=3,則b2=9”.在它的逆命題、否命題、逆否命題三個命題中,真命題的個數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合U={1,2,3,4,5,6,7},A={1,2,3,4},B={3,5,6},則A∩(∁UB)=( 。
A.{1,2}B.{1,2,7}C.{1,2,4}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.log2sin(-$\frac{15π}{4}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)正方體ABCD-A1B1C1D1的棱長為2,則點(diǎn)D1到平面A1BD的距離是( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若變量x,y滿足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,且z=2x+y的最大值和最小值分別為m和n,則2m-n的值為( 。
A.$\frac{9}{2}$B.6C.$\frac{15}{2}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實(shí)數(shù)x,y滿足x2+y2≤1,3x+4y≤0,則$\frac{x-3}{x-y-2}$的取值范圍是( 。
A.[1,4]B.[$\frac{19}{17}$,4]C.[1,$\frac{11}{3}$]D.[$\frac{19}{17}$,$\frac{11}{3}$]

查看答案和解析>>

同步練習(xí)冊答案