精英家教網 > 高中數學 > 題目詳情

【題目】根據教育部高考改革指導意見,廣東省從2021年正式實施“”新的高考考試方案.為盡快了解學生的選科需求,及時調整學校人力資源配備.某校從高一學生中抽樣調查了100名同學,在模擬分科選擇中,一半同學(其中男生38人)選擇了物理,另一半(其中男生14人)選擇了歷史.請完成以下列聯表,并判斷能否有99.9%的把握說選科與性別有關?

參考公式:,其中為樣本容量.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

選物理

選歷史

總計

男生

女生

總計

【答案】列聯表見解析,有99.9%的把握說選科與性別有關.

【解析】

選物理的男生38人,則女士12人,選歷史的男生14人,則女士36人,即可完成列聯表,做出假設:選科與性別沒有關系,再由表中數據計算的觀測值,可得觀測值大于,所以在犯錯誤的概率不超過0.001的前提下認為選科與性別有關系,即有99.9%的把握有關系.

列出列聯表如下:

選物理

選歷史

總計

男生

38

14

52

女生

12

36

48

總計

50

50

100

提出假設:選科與性別沒有關系.

根據列聯表中的數據計算的觀測值.

因為,所以有99.9%的把握說選科與性別有關.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知在四棱錐P-ABCD中,底面ABCD是矩形,且,,平面ABCD,EF分別是線段AB、BC的中點.

1)證明:

2)點G在線段PA上,且平面PFD,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線C的參數方程為為參數.在以原點為極點,為參數).在以原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為

(Ⅰ)求曲線C的普通方程和直線的直角坐標方程;

(Ⅱ)設,直線與曲線C交于M,N兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知對稱軸為坐標軸的雙曲線有一條漸近線為2x﹣y=0,則該雙曲線的離心率為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為坐標原點,圓,定點,點是圓上一動點,線段的垂直平分線交圓的半徑于點,點的軌跡為.

(1)求曲線的方程;

(2)已知點是曲線上但不在坐標軸上的任意一點,曲線軸的焦點分別為,直線分別與軸相交于兩點,請問線段長之積是否為定值?如果還請求出定值,如果不是請說明理由;

(3)在(2)的條件下,若點坐標為(-1,0),設過點的直線相交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是 (為參數).

(1)將曲線的極坐標方程化為直角坐標方程;

(2)若直線與曲線相交于兩點,且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(e為自然對數的底數),

(I)記.

(i)討論函數單調性;

(ii)證明當時,恒成立

(II)令,設函數G(x)有兩個零點,求參數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,三棱柱中,已知側面.

1)求證 平面;

2是棱長上的一點,若二面角的正弦值為,的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在長方體中,分別是棱,

上的點,,

1) 求異面直線所成角的余弦值;

2) 證明平面

3) 求二面角的正弦值.

查看答案和解析>>

同步練習冊答案