【題目】選修4-4:坐標(biāo)系與參數(shù)方程

直線 的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn) 為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為 ,直線 與曲線 交于不同的兩點(diǎn) ,.

(1)求實(shí)數(shù) 的取值范圍;

(2)已知 ,設(shè)點(diǎn) ,若 , , 成等比數(shù)列,求 的值.

【答案】(1);(2).

【解析】分析:(1)把直線 的參數(shù)方程化為普通方程,曲線 的極坐標(biāo)方程化為普通方程,二者聯(lián)立,利用判別式法得到實(shí)數(shù) 的取值范圍;(2) 把直線l的參數(shù)方程代入曲線C的普通方程中,得到關(guān)于t的一元二次方程.
由△>0,且|MN|2=|PM||PN|,結(jié)合根與系數(shù)的關(guān)系,求出a的值.

詳解:(1)直線的方程為:,直線的方程為:,聯(lián)立方程:

由題知;

(2)設(shè),分別對(duì)應(yīng),則有:

由題知,由韋達(dá)定理有:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),,,其中的導(dǎo)函數(shù).

(1)令,,,求的表達(dá)式;

(2)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】辦公室裝修一新,放些植物花草可以清除異味,公司提供綠蘿、文竹、碧玉、蘆薈4種植物供員工選擇,每個(gè)員工任意選擇2種,則員工甲和乙選擇的植物全不同的概率為:

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓

(1)求圓關(guān)于直線對(duì)稱的圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線被圓截得的弦長(zhǎng)為8,求直線的方程;

(3)當(dāng)取何值時(shí),直線與圓相交的弦長(zhǎng)最短,并求出最短弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過300分鐘的廣告,廣告費(fèi)用不超過9萬(wàn)元,甲、乙電視臺(tái)的廣告費(fèi)標(biāo)準(zhǔn)分別是500/分鐘和200元分鐘,假設(shè)甲、乙兩個(gè)電視臺(tái)為該公司做的廣告能給公司帶來(lái)的收益分別為0.4萬(wàn)元/分鐘和0.2萬(wàn)元分鐘,那么該公司合理分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,能使公司獲得最大的收益是()萬(wàn)元

A.72B.80C.84D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+2aln x.

(1)當(dāng)a=1時(shí),求函數(shù)f′(x)的最小值;

(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,為了測(cè)量A,B處島嶼的距離,小明在D處觀測(cè),A,B分別在D處的北偏西15°、北偏東45°方向,再往正東方向行駛40海里至C處,觀測(cè)B在C處的正北方向,A在C處的北偏西60°方向,則A,B兩處島嶼間的距離為(
A. 海里
B. 海里
C. 海里
D.40海里

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)在中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,.()若的面積等于,求;)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠要制造A種電子裝置45臺(tái),B種電子裝置55臺(tái),需用薄鋼板給每臺(tái)裝置配一個(gè)外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2m2,可做A、B的外殼分別為3個(gè)和5個(gè),乙種薄鋼板每張面積3m2,可做A、B的外殼分別為6個(gè)和6個(gè),求兩種薄鋼板各用多少?gòu)垼拍苁箍偟拿娣e最。

查看答案和解析>>

同步練習(xí)冊(cè)答案