4.已知函數(shù)f(x)=sinωx(ω>0)的部分圖象如圖所示,為得到函數(shù)y=cos(ωx+$\frac{π}{3}$)的圖象,只需將函數(shù)y=f(x)的圖象( 。
A.向左平移$\frac{5π}{12}$個(gè)單位長(zhǎng)度B.向右平移$\frac{5π}{12}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{5π}{6}$個(gè)單位長(zhǎng)度D.向右平移$\frac{5π}{6}$個(gè)單位長(zhǎng)度

分析 根據(jù)函數(shù)f(x)的圖象求出ω的值,化簡(jiǎn)f(x),根據(jù)平移法則即可得出答案.

解答 解:根據(jù)函數(shù)f(x)=sinωx(ω>0)的圖象知,
函數(shù)的周期為T=π,$\frac{2π}{ω}$=π,
所以ω=2;
所以f(x)=sin2x,
又f(x)=cos($\frac{π}{2}$-2x)=cos(2x-$\frac{π}{2}$),
且cos[2(x+$\frac{5π}{12}$)-$\frac{π}{2}$]=cos(2x+$\frac{π}{3}$),
所以,為得到函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象,
只需將函數(shù)y=f(x)的圖象向左平移$\frac{5π}{12}$個(gè)單位長(zhǎng)度.
故選:A.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象一個(gè)最高點(diǎn)為P($\frac{π}{4}$,2),相鄰最低點(diǎn)為Q($\frac{3π}{4}$,-2),當(dāng)x∈[-$\frac{π}{6}$,$\frac{π}{3}$]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=sinx-2cos2$\frac{x}{2}$.
(1)求f($\frac{π}{4}$)的值;
(2)當(dāng)x∈[0,π]時(shí),求函數(shù)f(x)的值域;
(3)若直線x=x0是函數(shù)y=f(4x)圖象的對(duì)稱軸,且x0∈[0,$\frac{π}{4}$],求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,A,B,C為圓O上三點(diǎn),點(diǎn)B平分弧$\widehat{AC}$,點(diǎn)P為AC延長(zhǎng)線上一點(diǎn),PQ是圓O的切線,切點(diǎn)為Q,BQ與AC相交于點(diǎn)D.
(1)求證:PD=PQ;
(2)若PC=1,AD=PD,求BD•QD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過直角坐標(biāo)平面內(nèi)三點(diǎn)O(0,0),A(2,0),B(0,2)的圓的方程為( 。
A.(x+1)2+(y+1)2=1B.(x+1)2+(y+1)2=2C.(x-1)2+(y-1)2=1D.(x-1)2+(y-1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知Sn={A|A=(a1,a2,a3,…,an),ai=0或1,i=1,2…,n}(n≥2),對(duì)于U,V∈Sn,d(U,V)表示U,V中相對(duì)應(yīng)位置上的數(shù)不同的個(gè)數(shù).
(1)若U=(1,1,…,1)則對(duì)于所有V∈Sn,全部d(U,V)之和D=n•2n-1
(2)對(duì)于所有U,V∈Sn,全部d(U,V)之和D=n•22n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a∈R,函數(shù)f(x)=x|x-a|-2x+a2
(Ⅰ)若a>2,解關(guān)于x的方程f(x)=a2-2a;
(Ⅱ)若a∈[-2,4],求函數(shù)f(x)在閉區(qū)間[-3,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2-|x2-ax-2|,a為實(shí)數(shù).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)在[0,3]上的最小值和最大值;
(Ⅱ)若函數(shù)f(x)在(-∞,-1)和(2,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.$\underset{lim}{x→0}$$\frac{sinx}{x}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案