19.如圖所示是函數(shù)y=f(x)的圖象,則函數(shù)f(x)可能是( 。
A.(x+$\frac{1}{x}$)cosxB.(x+$\frac{1}{x}$)sinxC.xcosxD.$\frac{cosx}{x}$

分析 判斷函數(shù)的奇偶性,排除選項(xiàng),然后利用函數(shù)的變換趨勢(shì)推出結(jié)果即可.

解答 解:由函數(shù)的圖形可知:函數(shù)是奇函數(shù),可知y=(x+$\frac{1}{x}$)sinx不滿足題意;
當(dāng)x→+∞時(shí),y=(x+$\frac{1}{x}$)cosx與y=xcosx滿足題意,y=$\frac{cosx}{x}$不滿足題意;
當(dāng)x→0時(shí),y=(x+$\frac{1}{x}$)cosx滿足題意,y=xcosx不滿足題意,
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的圖象的應(yīng)用,注意函數(shù)的奇偶性以及函數(shù)的變換趨勢(shì),是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=e1-x(-a+cosx),a∈R.
(Ⅰ)若函數(shù)y=f(x)在[0,π]存在單調(diào)增區(qū)間,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若f($\frac{π}{2}$)=0,證明:對(duì)于?x∈[-1,$\frac{1}{2}$],總有f(-x-1)+2f′(x)•cos(-x-1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知任意兩個(gè)向量$\overrightarrow{a}$,$\overrightarrow$不共線,若$\overrightarrow{OA}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{OB}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{OC}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{OD}$=$\overrightarrow{a}$-$\overrightarrow$,則下列結(jié)論正確的是( 。
A.A,B,C三點(diǎn)共線B.A,B,D三點(diǎn)共線C.A,C,D三點(diǎn)共線D.B,C,D三點(diǎn)共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.復(fù)數(shù)$z=\frac{2+i}{i}$的共軛復(fù)數(shù)是( 。
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=lnx-kx+1.
(1)當(dāng)k=2時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)若f(x)≤0恒成立,試確定實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{xn}按如下方式構(gòu)成:xn∈(0,1)(n∈N*),函數(shù)f(x)=ln($\frac{1+x}{1-x}$)在點(diǎn)(xn,f(xn))處的切線與x軸交點(diǎn)的橫坐標(biāo)為xn+1
(Ⅰ)證明:當(dāng)x∈(0,1)時(shí),f(x)>2x
(Ⅱ)證明:xn+1<xn3
(Ⅲ)若x1∈(0,a),a∈(0,1),求證:對(duì)任意的正整數(shù)m,都有l(wèi)og${\;}_{{x}_{n}}$a+log${\;}_{{x}_{n+1}}$a+…+log${\;}_{{x}_{n+m}}$a<$\frac{1}{2}$•($\frac{1}{3}$)n-2(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1且z=2x+y}\\{y≥-1}\end{array}\right.$的 最大值=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知$\frac{{2{S_n}}}{3}-{3^{n-1}}$=1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足${b_n}=\frac{{{{log}_3}{a_n}}}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱BB1上,且A1F⊥B1D,求證:
(Ⅰ)直線DE∥平面A1C1F;
(Ⅱ)B1D⊥平面A1C1F.

查看答案和解析>>

同步練習(xí)冊(cè)答案