【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知曲線,以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:p(2cosθ-sinθ)=6.
(1)試寫出直線l的直角坐標方程和曲線C1的參數(shù)方程;
(2)在子曲線C1上求一點P,使點P到直線l的距離最大,并求出此最大值.
科目:高中數(shù)學 來源: 題型:
【題目】已知且,設(shè)命題函數(shù)在R上單調(diào)遞減,命題對任意實數(shù)x,不等式恒成立.
(1)求非q為真時,實數(shù)c的取值范圍;
(2)如果命題為真命題,且為假命題,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的方程為,過點的一條直線與拋物線交于兩點,若拋物線在兩點的切線交于點.
(1)求點的軌跡方程;
(2)設(shè)直線與直線的夾角為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若在處的切線方程為,求的值;
(2)若為區(qū)間上的任意實數(shù),且對任意,總有成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種子公司對一種新品種的種子的發(fā)芽多少與晝夜溫差之間的關(guān)系進行分析研究,以便選擇最合適的種植條件.他們分別記錄了10塊試驗地每天的晝夜溫差和每塊實驗地里50顆種子的發(fā)芽數(shù),得到如下資料:
(1)從上述十組試驗數(shù)據(jù)來看,是否可以判斷晝夜溫差與發(fā)芽數(shù)之間具有相關(guān)關(guān)系?是否具有線性相關(guān)關(guān)系?
(2)若在一定溫度范圍內(nèi),晝夜溫差與發(fā)芽數(shù)近似滿足相關(guān)關(guān)系:(其中).取后五組數(shù)據(jù),利用最小二乘法求出線性回歸方程(精確到0.01);
(3)利用(2)的結(jié)論,若發(fā)芽數(shù)試驗值與預測值差的絕對值不超過3個就認為正常,否則認為不正常.從上述十組試驗中任取三組,至少有兩組正常的概率是多少?
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】黨的“十八大”之后,做好農(nóng)業(yè)農(nóng)村工作具有特殊重要的意義.國家為了更 好地服務(wù)于農(nóng)民、開展社會主義新農(nóng)村工作,派調(diào)查組到農(nóng)村某地區(qū)考察.該地區(qū)有100戶農(nóng) 民,且都從事蔬菜種植.據(jù)了解,平均每戶的年收入為6萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),當?shù)卣疀Q 定動員部分農(nóng)民從事蔬菜加工.據(jù)統(tǒng)計,若動員戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù) 從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高,而從事蔬菜加工的農(nóng)民平均每戶的年收入為萬元.
(1)在動員戶農(nóng)民從事蔬菜加工后,要使剩下戶從事蔬菜種植的所有農(nóng)民總年收 入不低于動員前100戶從事蔬菜種植的所有農(nóng)民年總年收入,求的取值范圍;
(2)在(1)的條件下,要使這戶農(nóng)民從事蔬菜加工的總年收入始終不高于戶從事蔬菜種植的所有農(nóng)民年總年收入,求的最大值.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某城市有一塊半徑為(單位:百米)的圓形景觀,圓心為,有兩條與圓形景觀相切且互相垂直的道路.最初規(guī)劃在拐角處圖中陰影部分只有一塊綠化地,后來有眾多市民建議在綠化地上建一條小路,便于市民快捷地往返兩條道路.規(guī)劃部門采納了此建議,決定在綠化地中增建一條與圓相切的小道問:兩點應選在何處可使得小道最短?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】研究表明某地的山高 ()與該山的年平均氣溫 ()具有相關(guān)關(guān)系,根據(jù)所采集的數(shù)據(jù)得到線性回歸方程,則下列說法錯誤的是( )
A.年平均氣溫為時該山高估計為
B.該山高為處的年平均氣溫估計為
C.該地的山高與該山的年平均氣溫的正負相關(guān)性與回歸直線的斜率的估計值有關(guān)
D.該地的山高與該山的年平均氣溫成負相關(guān)關(guān)系
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com