【題目】黨的“十八大”之后,做好農(nóng)業(yè)農(nóng)村工作具有特殊重要的意義.國家為了更 好地服務(wù)于農(nóng)民、開展社會主義新農(nóng)村工作,派調(diào)查組到農(nóng)村某地區(qū)考察.該地區(qū)有100戶農(nóng) 民,且都從事蔬菜種植.據(jù)了解,平均每戶的年收入為6萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),當(dāng)?shù)卣疀Q 定動員部分農(nóng)民從事蔬菜加工.據(jù)統(tǒng)計,若動員戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù) 從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高,而從事蔬菜加工的農(nóng)民平均每戶的年收入為萬元.

(1)在動員戶農(nóng)民從事蔬菜加工后,要使剩下戶從事蔬菜種植的所有農(nóng)民總年收 入不低于動員前100戶從事蔬菜種植的所有農(nóng)民年總年收入,求的取值范圍;

(2)在(1)的條件下,要使這戶農(nóng)民從事蔬菜加工的總年收入始終不高于戶從事蔬菜種植的所有農(nóng)民年總年收入,求的最大值.(參考數(shù)據(jù):)

【答案】(1)見解析;(2)5.46

【解析】

(1)根據(jù)題意得到解出不等式即可;(2)從事蔬菜種植的所有農(nóng)民年總年收入萬元,依題意得 恒成立變量分離轉(zhuǎn)化為對勾函數(shù),由函數(shù)的單調(diào)性得到最值即可.

(1)由題意得

,

,所以();

(2)戶農(nóng)民從事蔬菜加工的總年收入為萬元,從事蔬菜種植的所有農(nóng)民年總年收入萬元,依題意得 恒成立,

,恒成立,上遞減,在遞增,,, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了紀念“一帶一路”倡議提出五周年,某城市舉辦了一場知識競賽,為了了解市民對“一帶一路”知識的掌握情況,從回收的有效答卷中按青年組和老年組各隨機抽取了40份答卷,發(fā)現(xiàn)成績都在內(nèi),現(xiàn)將成績按區(qū)間,,,進行分組,繪制成如下的頻率分布直方圖.

青年組

中老年組

(1)利用直方圖估計青年組的中位數(shù)和老年組的平均數(shù);

(2)從青年組,的分數(shù)段中,按分層抽樣的方法隨機抽取5份答卷,再從中選出3份答卷對應(yīng)的市民參加政府組織的座談會,求選出的3位市民中有2位來自分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的極值;

(Ⅱ)求證:當(dāng)時,存在,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是( )

A. 命題,則”的逆否命題為真命題;

B. 命題“”為假命題,則命題與命題都是假命題

C. 成立的必要不充分條件;

D. 命題存在,使得”的否定是:“對任意,均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)在直角坐標系內(nèi)直接畫出的圖象;

2)寫出的單調(diào)區(qū)間,并指出單調(diào)性(不要求證明);

3)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓過定點,并且內(nèi)切于定圓..

(1)求動圓圓心的軌跡方程;

(2)若上存在兩個點,(1)中曲線上有兩個點,并且三點共線,三點共線,,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地區(qū)2012年至2018年生活垃圾無害化處理量(單位:萬噸)的折線圖.

注:年份代碼分別表示對應(yīng)年份.

1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)線性相關(guān)較強)加以說明;

2)建立的回歸方程(系數(shù)精確到0.01),預(yù)測2019年該區(qū)生活垃圾無害化處理量.

(參考數(shù)據(jù)),,,,,.

(參考公式)相關(guān)系數(shù),在回歸方程中斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求曲線在點處的切線方程;

2)求的單調(diào)區(qū)間;

3)若對于任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,底面,,,,,的中點.

(1)求證:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案