5.將函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象經(jīng)過怎樣的平移后所得的圖象關(guān)于點$({-\frac{π}{12},0})$中心對稱( 。
A.向左平移$\frac{π}{12}$單位B.向左平移$\frac{π}{6}$單位C.向右平移$\frac{π}{12}$單位D.向右平移$\frac{π}{6}$單位

分析 設(shè)出將函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象向左平移ρ個單位得到關(guān)系式,然后將x=-$\frac{π}{12}$代入使其等于0,再由正弦函數(shù)的性質(zhì)可得到ρ的所有值,再對選項進(jìn)行驗證即可.

解答 解:假設(shè)將函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象向左平移ρ個單位得到y(tǒng)=sin(2x+2ρ+$\frac{π}{3}$)的圖象,
再根據(jù)y=sin(2x+2ρ+$\frac{π}{3}$)的圖象關(guān)于點(-$\frac{π}{12}$,0)中心對稱,
∴將x=-$\frac{π}{12}$代入,得到sin(-$\frac{π}{6}$+2ρ+$\frac{π}{3}$)=sin( $\frac{π}{6}$+2ρ)=0,∴$\frac{π}{6}$+2ρ=kπ,∴ρ=-$\frac{π}{12}$+$\frac{kπ}{2}$,k∈Z,
當(dāng)k=0時,ρ=-$\frac{π}{12}$,即實際向右平移$\frac{π}{12}$個單位,
故選:C.

點評 本題主要考查正弦函數(shù)的平移變換和基本性質(zhì)--對稱性,考查計算能力,常考題型之一,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在平面直角坐標(biāo)系xOy中,M為不等式組$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$所表示的區(qū)域上一動點,已知點A(-1,2),則直線AM斜率的最小值為(  )
A.-$\frac{2}{3}$B.-2C.0D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知F1,F(xiàn)2為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=l(a>b>0)的左、右焦點,B1,B2橢圓短軸的端點,四邊形F1B1,F(xiàn)2B2為正方形且面積等于50.
(I)求橢圓方程;
(Ⅱ)過焦點Fl且傾斜角為30°的直線l交橢圓于M,N兩點,求△F2MN內(nèi)切圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)向量$\overrightarrow a=(3,1)$,$\overrightarrow b=(1,3)$,$\overrightarrow c=(k,5)$,若($\overrightarrow{a}$+$\overrightarrow{c}$)∥$\overrightarrow$,則實數(shù)k=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖是一個幾何體的三視圖,若它的體積是3,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在十進(jìn)制數(shù)中的運算規(guī)律是“滿十進(jìn)一”,類比這個運算規(guī)律,進(jìn)行八進(jìn)制的四則運算,請計算53(8)×26(8)=1662(8).(運算結(jié)果必須用八進(jìn)制數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x>0,y>0,$\frac{2}{x}+\frac{1}{y}$=1,若2x+y>m2+2m恒成立,則實數(shù)m的取值范圍是( 。
A.(-∞,-1-$\sqrt{10}$)B.$(-1-\sqrt{10},-1+\sqrt{10})$C.$[{-1+\sqrt{10},+∞})$D.$[{-1-\sqrt{10},-1+\sqrt{10}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平面直角坐標(biāo)系中,O為坐標(biāo)原點,從單位圓外一點A引圓O的兩條切線,切點分別為B1,B2,若滿足條件|$\overrightarrow{c}$-($\overrightarrow{O{B}_{1}}$+$\overrightarrow{O{B}_{2}}$)|=|$\overrightarrow{O{B}_{1}}$-$\overrightarrow{O{B}_{2}}$|的向量$\overrightarrow{c}$的模最大時,則$\overrightarrow{A{B}_{1}}$•$\overrightarrow{A{B}_{2}}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知|$\overrightarrow a$|=4,|$\overrightarrow b$|=8,$\overrightarrow a$與$\overrightarrow b$的夾角是120°.
(1)計算:|$\overrightarrow a$+$\overrightarrow b$|
(2)當(dāng)k為何值時,($\overrightarrow a$+2$\overrightarrow b$)⊥(k$\overrightarrow a$-$\overrightarrow b$)?

查看答案和解析>>

同步練習(xí)冊答案