1.在鈍角△ABC中,角A,B,C所對(duì)的邊分別為A,B,C且b=atanB.
(Ⅰ)求A-B的值;
(Ⅱ)求sinA+sinB的取值范圍.

分析 (Ⅰ)由b=atanB得:bcosB=asinB,再利用正弦定理結(jié)合已知即可得出.
(Ⅱ)由(Ⅰ)及三角函數(shù)恒等變換的應(yīng)用可得sinA+sinB=$\sqrt{2}$sin(B+$\frac{π}{4}$),求得B的范圍,利用正弦函數(shù)的單調(diào)性與值域即可得出.

解答 解:(Ⅰ)由b=atanB,得:bcosB=asinB,(1分)
又由正弦定理得,sinBcosB=sinAsinB,(3分)
由sinB≠0,
所以cosB=sinA(4分)
又P是鈍角三角形,所以$A-B=\frac{π}{2}$.  (6分)
(Ⅱ)由$A-B=\frac{π}{2}$,
所以sinA+sinB=sin(B+$\frac{π}{2}$)+sinB=cosB+sinB=$\sqrt{2}$sin(B+$\frac{π}{4}$),
由(Ⅰ)知C=π-(A+B)=$\frac{π}{2}$-2B∈(0,$\frac{π}{2}$),(8分)
所以$0<B<\frac{π}{4}$,(10分)
可得:$B+\frac{π}{4}∈(\frac{π}{4},\frac{π}{2})$
又$\sqrt{2}sin(B+\frac{π}{4})∈(1,\sqrt{2})$,
所以:$sinA+sinB∈(1,\sqrt{2})$.   (12分)

點(diǎn)評(píng) 本題考查了正弦定理、三角函數(shù)的單調(diào)性與值域,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,若過(guò)點(diǎn)F且斜率為B的直線與拋物線相交于M、N兩點(diǎn),且|MN|=8.
(1)求拋物線C的方程;
(2)設(shè)直線l為拋物線C的切線,且l∥MN,點(diǎn)P為直線l上的任意一點(diǎn),求$\overrightarrow{PM}•\overrightarrow{PN}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在3張卡片的正反兩面上,分別寫著數(shù)字1和2,4和5,7和8,將它們并排組成三位數(shù),不同的三位數(shù)的個(gè)數(shù)是48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)F1、F2分別為橢圓C1:$\frac{{x}^{2}}{{a}_{1}^{2}}$+$\frac{{y}^{2}}{_{1}^{2}}$=1(a1>b1>0)與雙曲線C2:$\frac{{x}^{2}}{{a}_{2}^{2}}$-$\frac{{y}^{2}}{_{2}^{2}}$=1(a2>b2>0)的公共焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)M,∠F1MF2=90°,若橢圓的離心率e1∈[$\frac{3}{4}$,$\frac{2\sqrt{2}}{3}$],則雙曲線C2的離心率e2的取值范圍為$[\frac{2\sqrt{14}}{7},\frac{3\sqrt{2}}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知兩向量$\vec a$與$\vec b$滿足$|{\vec a}|=4,|{\vec b}|=2$,且$({\vec a+2\vec b})•({\vec a+\vec b})=12$,則$\vec a$與$\vec b$的夾角為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.一個(gè)人在打靶中連續(xù)射擊兩次,事件“至少有一次中靶”的互斥事件是( 。
A.至多有一次中靶B.兩次都中靶C.兩次都不中靶D.只有一次中靶

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.把$-\frac{1999π}{5}$表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ的值是$\frac{π}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知角α的終邊與單位圓相交于點(diǎn)$P({{{\frac{4}{5}}_{\;}},-\frac{3}{5}})$,現(xiàn)將角α的終邊繞坐標(biāo)原點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)$\frac{π}{3}$,所得射線與單位圓相交于點(diǎn)Q,則點(diǎn)Q的橫坐標(biāo)為( 。
A.$\frac{{4+3\sqrt{3}}}{10}$B.$\frac{{4-3\sqrt{3}}}{10}$C.$\frac{{3+4\sqrt{3}}}{10}$D.$\frac{{4\sqrt{3}-3}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展開(kāi)式中x的系數(shù)恰好是數(shù)列{an}的前n項(xiàng)和Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足${b_n}=\frac{{{2^{a_n}}}}{{({{2^{a_n}}-1})({{2^{{a_{n+1}}}}-1})}}$,記數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案