9.在△ABC中,a,b,c分別為角A,B,C 的對邊,若a+b=2,c=1,則角C 的最大值為( 。
A.30°B.60°C.90°D.120°

分析 由余弦定理與基本不等式的性質(zhì)可得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{(a+b)^{2}-2ab-1}{2ab}$=$\frac{3-2ab}{2ab}$=$\frac{3}{2ab}$-1≥$\frac{3}{2(\frac{a+b}{2})^{2}}$-1=$\frac{1}{2}$,即可得出.

解答 解:由余弦定理可得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{(a+b)^{2}-2ab-1}{2ab}$
=$\frac{3-2ab}{2ab}$=$\frac{3}{2ab}$-1≥$\frac{3}{2(\frac{a+b}{2})^{2}}$-1=$\frac{1}{2}$,
當且僅當a=b=1時取等號.又C∈(0°,180°),
可得C≤60°,因此角C 的最大值為60°
故選:B.

點評 本題考查了不等式的性質(zhì)與解法、余弦定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)y=f(x)定義在[-1,2]上,且滿足f(-$\frac{1}{2}$)<f(1),則f(x)在區(qū)間[-1,2]上是( 。
A.增函數(shù)B.減函數(shù)
C.先減后增D.無法判斷其單調(diào)性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=sin($\frac{π}{6}$-2x)-2sin2x+1,若f(x)=Asin(2x+φ),且A≥0,0≤φ<2π,求滿足條件的A,φ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等比數(shù)列{an}中,若a3=-3,則此數(shù)列的前5項之積等于( 。
A.-15B.15C.243D.-243

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.使用輾轉(zhuǎn)相除法,得到315和168的最大公約數(shù)是21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合A={x|ax2-4x+1=0}有且只有一個元素,則實數(shù)a的值為0或4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知i是虛數(shù)單位,則復(fù)數(shù)$i+\frac{1}{1-i}$=( 。
A.1+3iB.$\frac{1}{2}+\frac{3}{2}i$C.1-3iD.$\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知A(-2,4),B(3,-1),C (-3,-4)且$\overrightarrow{CM}$=3$\overrightarrow{CA}$,$\overrightarrow{CN}$=2$\overrightarrow{CB}$,求點M、N及$\overrightarrow{MN}$的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為了解某地區(qū)居民用水情況,通過抽樣,獲得了100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,1],[1,2),…[4,5]分成5組,制成了如圖所示的頻率分布直方圖.
(1)估計這100位居民月均用水量的樣本平均數(shù)$\overline{x}$和樣本方差s2(同一組數(shù)據(jù)用該區(qū)間的中點值作代表,保留1位小數(shù)).
(2)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該地區(qū)居民每人的月均用水量符合“月均用水量超過3噸的人數(shù)不能占全部人數(shù)30%”的規(guī)定?

查看答案和解析>>

同步練習(xí)冊答案