【題目】在四棱柱中, 底面,四邊形是邊長為的菱形, 分別是和的中點,
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
【答案】(Ⅰ)見解析 (Ⅱ)
【解析】試題分析:(1)在△ADE中,利用余弦定理易得: ,即又平面底面,所以平面,故,得平面;(2)以點為坐標原點,分別以所在直線為軸,建立空間直角坐標系, 是平面的一個法向量, 是平面的一個法向量, .
試題解析:
(Ⅰ)證明:由,結(jié)合余弦定理可得,所以
因為底面,所以平面底面
又平面底面,所以平面,
因為平面,所以 --------①
由,得
因為點是的中點,所以 --------②
由①②,得平面
(Ⅱ)由(Ⅰ)知兩兩垂直,以點為坐標原點,分別以所在直線為軸,建立如圖所示空間直角坐標系,
設是平面的一個法向量,則
,取,得,
顯然, 是平面的一個法向量,
由圖可以看出二面角為銳角二面角,其余弦值為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 的定義域是一切實數(shù),則m的取值范圍是( )
A.0<m≤4
B.0≤m≤1
C.m≥4
D.0≤m≤4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司的兩個部門招聘工作人員,應聘者從 T1、T2兩組試題中選擇一組參加測試,成績合格者可簽約.甲、乙、丙、丁四人參加應聘考試,其中甲、乙兩人選擇使用試題 T1 , 且表示只要成績合格就簽約;丙、丁兩人選擇使用試題 T2 , 并約定:兩人成績都合格就一同簽約,否則兩人都不簽約.已知甲、乙考試合格的概率都是 ,丙、丁考試合格的概率都是 ,且考試是否合格互不影響.
(1)求丙、丁未簽約的概率;
(2)記簽約人數(shù)為 X,求 X的分布列和數(shù)學期望EX.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x2﹣2x.
(1)畫出f(x)的簡圖,并求f(x)的解析式;
(2)利用圖象討論方程f(x)=k的根的情況.(只需寫出結(jié)果,不要解答過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,定點為圓上一動點,線段的垂直平分線交線段于點,設點的軌跡為曲線;
(Ⅰ)求曲線的方程;
(Ⅱ)若經(jīng)過的直線交曲線于不同的兩點,(點在點, 之間),且滿足,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)的定義域為D,若存在閉區(qū)間[a,b]D,使得函數(shù)f(x)滿足:
①f(x)在[a,b]上是單調(diào)函數(shù);
②f(x)在[a,b]上的值域是[2a,2b],則稱區(qū)間[a,b]是函數(shù)f(x)的“和諧區(qū)間”.
下列結(jié)論錯誤的是( )
A.函數(shù)f(x)=x2(x≥0)存在“和諧區(qū)間”
B.函數(shù)f(x)=2x(x∈R)存在“和諧區(qū)間”
C.函數(shù)f(x)= (x>0)不存在“和諧區(qū)間”
D.函數(shù)f(x)=log2x(x>0)存在“和諧區(qū)間”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:函數(shù)f(x)=loga(2+x)﹣loga(2﹣x)(a>0且a≠1)
(Ⅰ)求f(x)定義域;
(Ⅱ)判斷f(x)的奇偶性,并說明理由;
(Ⅲ)求使f(x)>0的x的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓錐曲線C的極坐標方程為ρ2= ,F(xiàn)1是圓錐曲線C的左焦點.直線l: (t為參數(shù)).
(1)求圓錐曲線C的直角坐標方程和直線l的直角坐標方程;
(2)若直線l與圓錐曲線C交于M,N兩點,求|F1M|+|F1N|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com