1.定義在R上的偶函數(shù)f(x),當(dāng)x≥0時,f(x)=ex+x3+ln(x2+1),且f(x+t)>f(x)在x∈(-1,+∞)上恒成立,則關(guān)于x的方程f(2x+1)=t的根的個數(shù)敘述正確的是( 。
A.有兩個B.有一個
C.沒有D.上述情況都有可能

分析 利用題意首先確定函數(shù)的單調(diào)性,然后結(jié)合函數(shù)的奇偶性整理計算即可求得最終結(jié)果.

解答 解:由題意知:f(x)=ex+x3+ln(x2+1)在(0,+∞)上單調(diào)遞增,
f(x+t)>f(x)在x∈(-1,+∞)上恒成立,必有t≥2,
則f(2x+1)=t的根有2個,
故選:A.

點評 本題考查函數(shù)的奇偶性,函數(shù)的單調(diào)性等,重點考查學(xué)生對基礎(chǔ)概念的理解和計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知全集U=R,M={x|x<0或x>2},N={x|x+3<0},則M∩N={x|x<-3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)$f(x)={log_{\frac{1}{2}}}\frac{1-ax}{x-1}+x$為奇函數(shù),a為常數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)在x∈(1,+∞)上的單調(diào)性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.二次函數(shù)f(x)滿足f(3-x)=f(3+x),又f(x)是[0,3]上的增函數(shù),且f(a)≥f(0),那么實數(shù)a的取值范圍是[0,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1}-2,x≤1}\\{-lo{g}_{2}(x+1),x>1}\end{array}\right.$,且f(a)=-4,則f(14-a)=(  )
A.-$\frac{7}{4}$B.-$\frac{5}{4}$C.-$\frac{3}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校從參加高三化學(xué)得分訓(xùn)練的學(xué)生中隨機抽出60名學(xué)生,將其化學(xué)成績(均為整數(shù))分成六段[40,50)、[50,60)、…、[90,100]后得到部分頻率分布直方圖(如圖).觀察圖形中的信息,回答下列問題:
(1)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補全頻率分布直方圖;
(2)據(jù)此估計本次考試的平均分;
(3)若從60名學(xué)生中隨機抽取2人,抽到的學(xué)生成績在[40,60)內(nèi)記0分,在[60,80)內(nèi)記1分,在[80,100]內(nèi)記2分,用X表示抽取結(jié)束后的總記分,求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,已知矩形ABCD中,$AB=\frac{4}{3}BC=8$,現(xiàn)沿AC折起,使得平面ABC⊥平面ADC,連接BD,得到三棱錐B-ACD,則其外接球的體積為( 。
A.$\frac{500π}{9}$B.$\frac{250π}{3}$C.$\frac{1000π}{3}$D.$\frac{500π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知矩形ABCD的頂點都在球心為O,半徑為R的球面上,$AB=6,BC=2\sqrt{3}$,且四棱錐O-ABCD的體積為$8\sqrt{3}$,則R等于( 。
A.4B.$2\sqrt{3}$C.$\frac{{4\sqrt{7}}}{9}$D.$\sqrt{13}$

查看答案和解析>>

同步練習(xí)冊答案