4.函數(shù)y=ln|x|-$\frac{1}{2}$x2+1的圖象大致為(  )
A.B.C.D.

分析 利用函數(shù)的奇偶性,以及函數(shù)導(dǎo)數(shù),求出函數(shù)的最值,判斷選項(xiàng)即可.

解答 A 解:當(dāng)x>0時(shí),y=f(x)=lnx-$\frac{1}{2}$x2+1,
f′(x)=$\frac{1}{x}$-x=$\frac{{1-{x^2}}}{x}$,
當(dāng)x>1時(shí),f′(x)<0,當(dāng)0<x<1時(shí),f′(x)>0,
故f(x)在x=1處取得最大值f(1)=$\frac{1}{2}$,又f(x)為偶函數(shù),
故選A.

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的單調(diào)性以及函數(shù)的圖象的判斷,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=x-1-$\frac{lnx}{x}$的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=-2x2+4x-5.
(1)求f(x)的定義域;
(2)求f($\frac{1}{2}$)的值;
(3)求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=lnx-$\frac{{{x^2}-2x+1}}{2}$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)證明:當(dāng)x>1時(shí),f(x)<x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.過平面外一點(diǎn)可以作無(wú)數(shù)條直線與已知平面平行;過平面外一點(diǎn)可以作一平面與已知平面平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某高校從5名男大學(xué)生志愿者和4名女大學(xué)生志愿者中選出3名派到3所學(xué)校支教(每所學(xué)校一名志愿者),要求這3名志愿者中男、女大學(xué)生都有,則不同的選派方案共有( 。
A.210種B.420種C.630種D.840種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=ax3+bx+1且f(m)=6,則f(-m)=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=ax-lnx在區(qū)間[1,+∞)上為減函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-2]B.(-∞,0]C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.等比數(shù)列{an}中,a8=1,公差q=$\frac{1}{2}$,則該數(shù)列前8項(xiàng)的和S8=( 。
A.254B.255C.256D.512

查看答案和解析>>

同步練習(xí)冊(cè)答案