一雙曲線中心在原點(diǎn),左焦點(diǎn)與拋物線y2=-16x焦點(diǎn)重合,漸近線方程式為y=±
7
3
x,則雙曲線方程為
 
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題意設(shè)出雙曲線的標(biāo)準(zhǔn)方程,求出拋物線的焦點(diǎn)坐標(biāo)后得到雙曲線的半焦距,結(jié)合漸近線方程及隱含條件求得雙曲線的標(biāo)準(zhǔn)方程.
解答: 解:由題意設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,
由拋物線y2=-16x得其焦點(diǎn)F(-4,0),∴c=4.
又雙曲線漸近線方程式為y=±
7
3
x,即
b
a
=
7
3

聯(lián)立
c=4
b
a
=
7
3
a2+b2=c2
,解得a2=9,b2=7.
∴雙曲線方程:
x2
9
-
y2
7
=1

故答案為:
x2
9
-
y2
7
=1
點(diǎn)評:本題考查了雙曲線的標(biāo)準(zhǔn)方程,考查了雙曲線的簡單幾何性質(zhì),是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在[0,+∞)上為增函數(shù),若關(guān)于x的方程f(b)=f(|2x-1|)有且只有一個(gè)實(shí)根,則實(shí)數(shù)b的取值范圍是( 。
A、b≥2
B、b≥0
C、b≤-1或b=0
D、b≥1或b≤-1或b=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:a*b的運(yùn)算為a*b=
|b|,a≥b
a,a<b
,設(shè)f(x)=(0*x)x-(2*x),則f(x)在區(qū)間[-2,3]上的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程|x-k|=
2
2
k
x
在區(qū)間[k-1,k+1]上有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)k的取值范圍是(  )
A、0<k≤1
B、0<k≤
2
C、1≤k
2
D、k≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=22x+2xa+a+1有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,
3
),O是原點(diǎn),點(diǎn)P(x,y)的坐標(biāo)滿足
3
x-y<0
x-
3
y+2<0
y≥0
,則
OA
OP
|
OP
|
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個(gè)正方體的表面積為S1,其外接球的表面積為S2,則
S1
S2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)同時(shí)滿足下列兩個(gè)條件:
①對任意x∈R,有f(x+2)≥f(x)+2;②對任意x∈R,有f(x+3)≤f(x)+3.
設(shè)g(x)=f(x)-x.
(Ⅰ)證明:g(x+3)≤g(x)≤g(x+2);
(Ⅱ)若f(4)=5,求f(2014)的值.

查看答案和解析>>

同步練習(xí)冊答案